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Independent Influences of Movement Distance and
Visual Distance on Fitts’ Law

Naser Al-Fawakhiri1 and Samuel D. McDougle1, 2
1 Department of Psychology, Yale University

2 Wu Tsai Institute, Yale University

Fitts’ Law is one among a small number of psychophysical laws. However, a fundamental variable in Fitts’
Law—themovement distance,D—confounds two quantities: The physical distance the effector has to move
to reach a goal, and the visually perceived distance to that goal. While these two quantities are functionally
equivalent in everyday motor behavior, decoupling them might improve our understanding of the factors
that shape speed–accuracy tradeoffs. Here, we leveraged the phenomenon of visuomotor gain adaptation
to de-confound movement and visual distance during goal-directed reaching. We found that movement
distance and visual distance can influence movement times, supporting a variant of Fitts’ Law that considers
both. The weighting of movement versus visual distance was modified by restricting movement range and
degrading visual feedback. These results may reflect the role of sensory context in early stages of motor
planning.

Public Significance Statement
You will automatically slow your movement when picking up a needle 5 inches away versus a
handkerchief 3 inches away. This fact is elegantly formalized by Fitts’ Law, which mathematically
relates movement duration to movement difficulty. However, one of the fundamental variables in the
law—the distance of a planned movement—is ambiguous: Is it the actual distance the hand must move
that biases movement duration, or is it the visually perceived distance? We decoupled these variables,
finding that Fitts’ Law is shaped by both quantities, and that the influence of one versus the other may be
related to the relevance of visual information. We believe our “addendum” to Fitts’ Law is timely, as
everyday motor behavior has become increasingly enmeshed with virtual environments that abstract our
movements into digital realities.
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Motor behavior is constrained by a speed–accuracy trade-off:
Whenever an action must be executed quickly, its accuracy
diminishes. Such a trade-off has been observed in saccadic eye
movements (Gopal et al., 2017; Wu et al., 2010), goal-directed
reaches (Goldberg et al., 2015), pointing movements (van Donkelaar,
1999), and even video game performance (Listman et al., 2021;
Warburton et al., 2023). Fitts (1954) famously formalized the
relationship between movement speed and accuracy constraints. This
relationship, known as Fitts’ Law, is one of the few so-called “laws”

of psychophysics and has been replicated (and occasionally caveated)
extensively over decades of behavioral research in humans and other
animals (Adam, 1992; de Grosbois et al., 2015; Goldberg et al.,
2015; Gopal et al., 2017; MacKenzie, 1992; MacKenzie & Buxton,
1992; Sambrooks & Wilkinson, 2013; Van Gisbergen et al., 1981;
Wu et al., 2010).

The common form of Fitts’ Law states that movement duration
(movement time [MT]) is logarithmically related to the width of a
movement target (W) and the movement’s amplitude (D):

MT = a + b × log2ð2D=WÞ, (1)

where a and b are empirically determined free parameters. The
quantity log2ð2D=WÞ is typically called the index of difficulty (ID),
reflecting a task’s accuracy constraints (other accuracy constraints,
such as the weight of a held tool, can be incorporated into this index
as well).

Fitts’ Law (Equation 1) has been of particular interest in applications
involving human–computer interactions (MacKenzie, 1992), such as
controlling a cursor on a computer screen with a mouse (Sambrooks &
Wilkinson, 2013; Thompson et al., 2004; Whisenand & Emurian,
1996), making movements in virtual or augmented reality (Rohs et al.,
2011; Rohs&Oulasvirta, 2008), or performing actions in a video game
(Listman et al., 2021; Warburton et al., 2023). In these virtual arenas,
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an inherent ambiguity in the movement amplitude (D) term of Fitts’
Law is laid bare: Does D reflect the physical distance traversed by the
limb, or the perceptual distance over which one intends to move a
proxy of their action (e.g., a cursor or avatar)? For example, a hand-held
computer mouse only needs to move a few centimeters for its visual
proxy to traverse a large computer monitor. It has been observed that as
visual distance on a screen becomes increasingly decoupled from
physical movement distance, predictions using Fitts’ Law tend to be
worsened (Thompson et al., 2004).
Explanations for Fitts’ Law suggest that it is an outgrowth of basic

facets of the motor system. For instance, it has been argued that
Fitts’ Law emerges from the size of the command signal used
to produce a movement—a smaller command signal may achieve
greater accuracy but result in a slower movement, while a larger
command signal may generate a faster but less accurate (more
variable) movement. This “signal-dependent noise” model (Harris
& Wolpert, 1998) suggests that MTs reflect how the size of
the motor command signal is affected by accuracy constraints,
achieving a compromise between these constraints and the duration
of the movement.
It has also been argued that Fitts’ Law emerges in the absence of

such noisy motor commands. Al Borno et al. (2020) position Fitts’
Law at a more abstract level of planning: when high accuracy is
demanded, many movement plans that land within the target are
possible, but with a wide range of movement durations. Thus,
inefficient solutions with long durations are likely to be chosen.
When the accuracy constraints are relaxed, movement plans with
short durations can be readily selected, but with more variable
endpoints.
Beyond more fundamental aspects of action selection and the

generation of motor commands, other contextual variables may
influence Fitts’ Law. For instance, some have observed violations of
Fitts’ Law when visual illusions alter the perception of movement
amplitude (D) and/or the width of a goal target (W), suggesting that
higher level visual representations can shape speed–accuracy
tradeoffs during movement planning (van Donkelaar, 1999, but
see also Alphonsa et al., 2016). These results suggest that a range of
factors may contribute to how the motor system computes movement
accuracy constraints and determines movement durations.
With these previous findings in mind, we hypothesized that the

D term in Fitts’ Law is influenced by both visual and physical
movement distances. To test this, we leveraged the phenomenon of
visuomotor gain adaptation (Bock & Burghoff, 1997; Krakauer et al.,
2004) to decouple movement and visual distances. We found support
for our predictions in a typical reaching task:MTs in a postadaptation,
no-feedback test phase were influenced by both movement and visual
distance (Experiment 1). Moreover, the relative weighting of these
quantities was flexible: Visual distance dominated when the range of
physical movements was restricted (Experiment 2). In contrast, when
continuous visual feedback was removed during the adaptation
phase, movement distance alone could explain test phase MTs
(Experiment 3). These latter effects persisted when we accounted for
difficulty differences between conditions attributable to latent task
geometry (Experiment 4). Taken together, our results suggest that the
speed–accuracy trade-off formalized by Fitts’ Law may reflect the
integration of multiple contextual variables. We speculate that this
contextual influence may operate during early planning stages of
goal-directed movement.

Method

Transparency and Openness

Data and analysis scripts are available at https://zenodo.org/
records/10642652. The experiments reported here were not preregis-
tered. Ideas and data presented here were not previously disseminated.

Participants

Experiments 1 and 4a were conducted in-lab. A total of N = 20
subjects (19 right-handed, age: 28.9 ± 9.1, 55% reported their sex as
female) participated in these experiments at an honorarium of $10/hr
(Experiment 1: N = 10, age: 29.8 ± 10.9, 50% female; Experiment
4a: N = 10, age: 27.9 ± 7.5, 60% reported their sex as female).
(Sample sizes for Experiments 1 and 4a were not determined using a
priori power analysis, though are consistent with similar investiga-
tions on the basic psychophysics of Fitts’ Law; Alphonsa et al.,
2016; Rohs et al., 2011; Rohs & Oulasvirta, 2008; van Donkelaar,
1999; Wu et al., 2010). All participants provided informed, written
consent in accordance with procedures approved by the Yale
University Institutional Review Board and reported their handed-
ness using the Edinburgh Handedness Inventory, with a score of
>40 indicating right-handedness (Oldfield, 1971).

Experiments 2, 3, and 4b were crowd-sourced, where data from
N = 84 subjects (77 right-handed, seven ambidextrous, age: 28.3 ±
4.6, 54% reported their sex as female) were collected online via
Prolific (Experiment 2: N = 27, age: 27.1 ± 5.0, 56% female;
Experiment 3: N = 27, age: 29.2 ± 4.7, 52% reported their sex as
female; Experiment 4b: N = 30, age: 28.5 ± 4.1, 53% reported their
sex as female). Recruitment was restricted to right-handed or
ambidextrous individuals in the United States between the ages of
18 and 35, who had at least 40 prior Prolific submissions, and a
sample size of 30 was targeted for each experiment. While not based
on a priori power analysis, this sample size mirrors typical psy-
chophysics sample sizes.

Apparatus

In-lab participants sat on a height-adjustable chair facing a 24.5
in. Liquid crystal display monitor (Asus VG259QM; display size:
543.74 mm × 302.62 mm; resolution: 1920 × 1,080 pixels; frame
rate set to 240 Hz; 1 ms response time), positioned horizontally
∼30 cm in front of the participant above the table platform, thus
preventing vision of the hand (Figure 1a). In their dominant hand
subjects held a stylus embedded within a custom-modified paddle
which they could slide across a digitizing tablet (Wacom PTH860;
active area: 311 mm × 216 mm). Hand position was recorded from
the tip of the stylus and sampled by the tablet at 200 Hz. Stimulus
presentation and movement recording were controlled by a custom-
built Octave script (GNU Octave V5.2.0; Psychtoolbox-3 V3.0.18;
Ubuntu 20.04.4 LTS).

General Task Protocol

Across all experiments, participants completed center-out reaching
movements and were instructed tomove their hand (in-lab, Figure 1a)
or computer mouse (online) to land a displayed cursor within a
visually indicated target. Participants were instructed to always
move as quickly and accurately as possible. A trial would start when
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participants brought their cursor to the central starting location (in-
lab: 7 mm diameter starting circle; online: 6 mm diameter assuming
96 PPI). To assist with re-centering, the cursor (in-lab: 3 mm diameter
cursor; online: 4 mm diameter) was visually displayed when it
was within 1 cm of the start location. After waiting in the center for
500ms, a circular target would appear at one of three possible angular
locations (straight ahead, or ±45° from straight ahead) and two
possible distances (in-lab: 5.3 cm or 10.6 cm away from the start
location; online: 4 cm or 8 cm away). For online studies, mouse
acceleration was inhibited by our task code. Centimeter or millimeter
distances for online studies were estimated assuming the resolution of
96 PPI (participant resolutions may have differed from this value).
We note that in our online studies, we could not directly control vision
of the hand during movement as we could in-lab.
We leveraged gain perturbations (Bock & Burghoff, 1997;

Krakauer et al., 2004)—alterations in the relationship between
movement distance and the visual consequences of those
movements—to decouple physical and visual distance in “mini-
blocks” of trials. We used a 2 × 2 design that yielded four possible
conditions (Figure 1b): (a) The target was displayed at the shorter
distance, and the required movement was similarly short (gain = 1;

no perturbation), (b) the target was displayed at the farther distance,
and the required movement was similarly long (gain = 1), (c) the
target was displayed at the farther distance, but the required
movement displacement was the same as the shorter distance (gain=
2), and (d) the target was displayed at the shorter distance but
the required movement displacement was the same as the longer
distance (gain = 0.5). In-lab participants would have to physically
move either 5.3 cm or 10.6 cm for all respective trials, whereas
online participants executed dramatically shorter movement
amplitudes due to their use of a computer mouse or trackpad.
Trials ended when participants stopped moving (velocity criterion:
<5 mm/s for greater than 200 ms) or after a maximum time elapsed
from the start of their reach. In Experiments 1 and 2, this maximum
time was 1 s. In Experiments 3 and 4, this maximum time was 2 s.

In each mini-block (Figure 1c), participants first completed an
“adaptation phase” (Experiments 1 and 2: 12 trials; Experiments 3
and 4: 21 trials), in which visual feedback was provided. If the visual
cursor successfully landed within the target region, participants
received 10 points, which was displayed adjacent to the target in
green text and added to a point total displayed on the screen. End-
point cursor feedback and points were displayed for 500 ms.
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Figure 1
Task Design and Theoretical Predictions

Note. (a) Top: In-lab experimental apparatus in Experiments 1 and 4a. Participants made center-out reaching movements on a digitizing tablet and viewed
visual feedback on a monitor that occluded the arm. Bottom: Experiments 2, 3, and 4b were conducted online. (b) Illustration of the four conditions used across
all experiments—a 2× 2 design crossing two levels of movement goal distances and visual goal distances by using feedback gain perturbations. (c) Participants
completed multiple mini-blocks for each of the four conditions. These mini-blocks consisted of a short adaptation phase with feedback, followed by a no-
feedback test phase. Analyses were conducted on movement time (MT) in the test phase. (d) Idealized predicted movement times given different (log)
movement distances across the four conditions, for three different models. The models differ in their definition of the D term of Fitts’ Law. Left: movement
distance (MD model); Center: visual distance (VD model); Right: multisensory integration of both movement and visual distance (MSI model).
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This adaptation phase allowed participants to learn the appropriate
distances required to hit the target for each condition (i.e., to undergo
gain adaptation). After adaptation, participants completed a “test
phase” (all Experiments: six trials), in which, critically, no visual
feedback nor points were provided. All key movement time (MT)
analyses were performed on these testing phases to preclude effects of
feedback corrections. During the testing phases, participants were
instructed to keep doing what they had been doing at the conclusion
of the adaptation phase, thus recreating the movements that were
successful in the previous trials. Participants were informed that
they would not receive any feedback about their performance in the
test phase.

Experiment 1

Participants (N = 10) were provided continuous (“online”) cursor
feedback during the adaptation phase of each mini-block. For trials
where the visual distance and the movement distance were identical
(gain = 1), the cursor veridically tracked the position of the hand.
For trials where the visual distance and the movement distance were
de-confounded (Figure 1b), the cursor was perturbed (e.g., for the
condition in which the visual distance was twice as long as the
movement distance, a hand displacement of 1 cm resulted in a cursor
displacement of 2 cm). This manipulation is typically referred to as a
gain perturbation (Bock & Burghoff, 1997; Krakauer et al., 2004),
and the ratio between the visual distance and the movement distance
is referred to as the gain (i.e., the previous example has gain = 2).
Training mini-blocks were 12 trials in length, followed by a six-trial
test phase. Participants completed 24 training-test mini-block pairs,
with six pairs for each condition. Conditions were pseudorando-
mized such that all four conditions appeared in a shuffled order
before repeating in a new shuffled order. The target diameter was
1.4 cm, and reach distances were 5.3 cm or 10.6 cm.

Experiment 2

Participants (N = 27) completed a task that was largely identical
to Experiment 1. The task was slightly shorter in length (16 training-
test mini-block pairs; four per condition) to accommodate the
online, crowd-sourced format. The target diameter was 60 px and
visual distances were 150 px or 300 px (assuming a standard
resolution of 96 pixels per inch, 4 cm or 8 cm, respectively).
Crucially, given the online format, the task now required only small,
restricted mouse movements.

Experiment 3

Participants (N = 27) completed a similar task to Experiment 2,
with some modifications. Instead of providing online feedback
during the adaptation phase, feedback was degraded such that it was
only provided when participants stopped moving (i.e., endpoint-
only feedback). Since adaptation to endpoint feedback is slower
(Taylor et al., 2014), adaptation phases were lengthened to 21 trials.
Participants completed 16 training-test mini-block pairs (four per
condition). The endpoint cursor seen during adaptation followed the
2 × 2 gain perturbation design employed in Experiments 1 and 2
(Figure 1b). In addition, to facilitate learning in this more difficult
context, the targets were slightly larger (75 px diameter) and color-
coded: Blue targets indicated no-gain manipulation, green targets

indicated that participants needed to “go farther” than expected in
order for the cursor to hit the target, and red targets indicated that
participants needed to “stop shorter” than expected in order to hit the
target. This instruction was repeated throughout the task at the start
of each training mini-block, and there was an additional three-trial
tutorial used to explain the nature of the perturbations. The target
diameter was 75 px, and visual distances were 150 px or 300 px.

Experiments 4a and 4b

Experiments 4a (in-lab, N = 10) and 4b (online, N = 30)
were largely identical to Experiment 3, including the three-trial
tutorial, color-coded targets, and endpoint-only feedback. Participants
completed 16 training-test mini-block pairs (four per condition) and
adaptation phases were again 21 trials long. The target diameter was
2 cm (75 px), and reach distances were 4 cm or 8 cm (150 px or
300 px). However, in Experiment 4, the cursor was not manipulated
using a “gain”manipulation. Instead, Experiment 4 aimed to preserve
the “effective width” of the target across all four conditions. By
effective width, we refer to the fact that gain manipulations will alter
the area that constitutes successful reaches which would cause the
cursor to land in the target. In other words, if the gain is 2 and a far
target distance is displayed, any initial small deviation from the correct
amplitude or angle of the reach, relative to the goal, will be magnified
twofold by the visually displayed cursor. Thus, in effect, the region
which allows successful reaches to land within the targets has
effectively half the radius as the equivalent (in movement distance)
no-gain condition.

To control for this “geometric” difficulty difference, Experiment 4
employed a slightly modified perturbation: In conditions where the
visual and movement distance were matched, no change occurred,
as in the earlier experiments. However, in conditions where the
movement distance was decoupled from visual distance, endpoint
feedback was calculated using a novel translation that accounted for
effective width (a “difficulty clamp”). In these conditions, one can
imagine a virtual (invisible) target at the movement distance (where
the target would have appeared on an unmanipulated trial). Reach
errors were computed relative to this virtual target but were displayed
relative to the visual target distance. This design maintained the basic
procedures of Experiment 3 but ensured that effective target width
was identical within each movement distance condition.

Statistical Analysis

The primary dependent measure was movement duration (MT).
Linear mixed-effect regression (LMER) models were run using R’s
lmerTest package. These models were designed to fit the MTs
recorded during the test phases, using fixed effects of the physical
movement extent (movement distance [MD]), the visual distance of
the target (VD), and the task success rate (i.e., the percentage of trials
where subjects did not time out) during the second half of each
adaptation mini-block, with subject ID as a random effect. Success
rate was included as a key predictor to control for the potentially
confounding effects of task success on movement speed or vigor
(Summerside et al., 2018). We restricted our success rate analysis to
the second half of the adaptation mini-blocks to exclude errors due
to relearning the perturbation and because these timepoints were
closer to the critical test phases (though computing success rate
using the full training block did not change the results). Type III
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analysis of variance (ANOVA) analysis with Satterthwaite’s method
was done using R’s anova command on the results of the LMER
regression, with automatic sphericity corrections applied. It should
be noted that our key analyses were only on MTs during the no-
feedback test phases. Thus, these MTs were unlikely to be
contaminated by corrective movements (this was further verified by
examination of the trajectories, see below).
We additionally computed the physical error between the

movement executed and the ideal movement. Errors were defined
as the magnitude of the vector between the movement endpoint and
the endpoint that would have resulted in the cursor landing in the
center of the target (the optimal solution), and included trials where
subjects timed out, using their last recorded hand location. Learning
curves were computed using this metric, averaging across trials
within each adaptation phase.We additionally defined “extent error”
as the difference between the final magnitude of the reach and the
optimal movement distance. Extent error was positive if participants
overshot the ideal movement amplitude (regardless of the angle of
the trajectory) and negative if they undershot. Success rate during
the adaptation phase was also used to examine learning and was
indexed by the proportion of trials in which participants landed
within the target in the allotted maximummovement time for a given
cycle of adaptation trials.
To target feedforward motor planning effects, post hoc analyses of

time to max velocity (TTMV) were conducted on test phase reaches
in Experiments 1 and 4a, the in-lab experiments. TTMVwas the time
from the onset of the reach until the maximum reach velocity was
achieved before stopping or prior to the maximum allotted movement
time. As was done with MTs, TTMVs in the test phases were fit with
a linear mixed-effects regression model, where visual distance,
movement distance, and success rate during the second half of each
adaptation mini-block were again used as predictors. A Type III
ANOVA with Satterwaithe’s method was conducted to extract the
fixed effects. In addition, we re-conducted the LMER analysis on
MTs after excluding trials where the reaching angle at midpoint
differed from the reaching angle at endpoint by more than 10 degrees
to account for effects of corrective submovements.Midpoint reaching
angle was defined as when the movement amplitude exceeded half
of the final movement amplitude. All analyses were conducted in
R (Version 4.2.1).

Modeling

Individual participant MT data were fit using various models all
employing the basic Fitts’ Law formulation, MT = a + b*log (2D/
W). The predicted patterns of data generated by these models are
plotted in Figure 1d. The movement distance only model predicts
MTs solely using the extent of the participants’ hand displacement
to set the D term. The visual distance only model predicts MTs
solely using the visually displayed distance of the target to set the D
term. The integrated (INT) model employs a weighted average
between the movement distance and the visual distance to set the D
term on each trial:

MT = a + b × logðλ ×MD + ½1 − λ� × VDÞ, (2)

where the weighting parameter λ constitutes a third free parameter
in addition to the standard a and b offset and scaling parameters
from Fitts’ Law; this additional weighting parameter varied from 0

(only visual distance matters) to 1 (only movement distance
matters).

All models assumed the target width was constant, as its visual
width was identical across all conditions and experiments. As a
control, we also included a fourth model that accounts for
differences in “effective target widths” that are caused by gain
manipulations (see descriptions for Experiments 4a and 4b above for
details). This effective width (EW) model performed a weighted
average between the visual width (a constant) and the effective
width (the inverse of the gain applied on a particular trial):

MT = a + b × log

�
MD
Weff

�
, (3)

Weff = η=gain + ð1 − ηÞ, (4)

where, if the free parameter η is 1, the width term of Fitts’ law is
entirely about the effective width of the target, and if η is 0, the width
term is completely unaffected by the gain manipulation, reflecting
the constant width of the visual target across all conditions.

Model fitting was performed using R’s optim function, employing
the L-BFGS-B optimization method. Model comparison was
conducted with the Bayesian information criterion (BIC) computed
on the average of model-predicted MTs for each condition and
subject. Reported “summed ΔBICs” were computed relative to the
mean BIC for each subject across the three main models (INT, MD,
VD). When comparing any two models, mean ΔBICs represent
across-subject averages of the difference in BICs for the two models
compared. Pseudo-R2 was computed per subject as 1 − Model SSE

Null SSE
where the Model SSE was the sum of squared errors between the
model-predicted averageMT for each condition and the true average
MT for each condition, and the Null SSE was the sum of squared
errors between the true average MT for each condition and the
average MT for all conditions.

Results

Experiment 1

In this study, we aimed to clarify which distance cues determine
movement duration in a reaching task. Online feedback was
provided and the gain on the cursor was manipulated in order to
dissociate the visual distance to the target and the physical
movement distance required to hit the target (Figure 1b). During
the 12-trial adaptation phases, participants successfully adapted to
the perturbation, achieving small reach errors by the last trial
within each adaptation phase: The Euclidean distance from the
optimal solution (i.e., the movement needed in order for the cursor
to land in the center of the target) at the end of gain adaptation
averaged 4.3 mm, 95% CI [3.3, 5.3]. Euclidean distances (“errors”)
from the optimal solution on the last trial were not significantly
different between the unmanipulated (gain = 1) and manipulated
(gain= 2 or 0.5) conditions, paired t test, t(9)=−0.41, p= .67, dz=
−0.18. For the manipulated trials, participants slightly undershot
MfarVnear, signed extent error: −5.4 mm, 95% CI [−21.7, 10.9] and
significantly overshot MnearVfar, 22.2 mm, 95% CI [11.7, 32.8].
On average, participants successfully landed within the target
on 91% of training trials, 95% CI [88%, 94%]; Figure 2b. Success
rates significantly differed between conditions, paired t test,
t(9) = 3.59, p = .005, dz = 0.72, with manipulated trials resulting
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in 5.3% fewer successes on average (88.4% vs. 93.7%). While
statistically significant, this difference amounts to an average of
one additional failed trial per 20 trials. Success rates in the second
half of each adaptation block (i.e., after learning asymptote)
averaged 92.0%, 95% CI [89%, 95%].
Movement times during the critical test phase were fit using

a linear mixed-effect model. MTs were predicted using fixed
effects of true hand displacement, the visual distance of the target,
the success rate for that trial type during the second half of each
adaptation mini-block, and a random effect of subject ID. Actual
hand displacement was used instead of ideal displacement to
better capture the true data (Figure 2c). Success rate during
late adaptation (see Method section) was included as a predictor
to control for the effect of task success on movement vigor
(Summerside et al., 2018). Crucially, an ANOVA on the regression
results indicated main effects of both hand displacement, F(1,
27.39)= 32.35, p = 4.6 × 10−6 and the visual distance of the target,
F(1, 27.14) = 17.60, p = 2.6 × 10−4 on test phase MTs, suggesting
that both factors may influence Fitts’ Law (Figure 2d). However,
success rate did not significantly predict test phase MTs,
F(1, 27.40) = 0.25, p = .62.

These results were echoed by our computational modeling
(Figure 2e): The INT model (Equation 2, summed ΔBIC = −26)
outperformed both the MD (summed ΔBIC = 24, mean ΔBIC =
−5.00 [relative to INT], 7/10 better fit by INT) and VD models
(summedΔBIC = 1.5, meanΔBIC = −2.72, 6/10 better fit by INT).
The INT model fit participant trial-type average MTs with a strong
pseudo-R2 of 0.83 (MD: 0.40, VD: 0.54), again supporting the idea
that physical distance and visual distance both contributed to MTs.

As an additional control, participant MTs were also fit with the
EW model (Equations 3 and 4), which controls for the gain
perturbation’s tendency to modify error tolerances (see Method
section). Critically, this model failed to beat the INT model (mean
ΔBIC = 4.65, 8/10 better fit by INT).

Last, the key free parameter in the INT model (η), which lineary
averages the visual and movement distances, had a mean value of
0.53, 95%CI [0.28, 0.78], indicating that roughly 53% of theD term
in Fitts’ Law was reflective of the movement distance and 47% was
reflective of the perceived visual distance of the target. Having
demonstrated effects of both movement and visual distance on MT,
we next asked how aspects of task context could alter the relative
weighting of these two variables.
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Figure 2
Experiment 1 Results

Note. (a) Errors from the optimal solution (the target’s center) for each trial type during
adaptation, averaged across blocks and binned per cycle. Dashed line indicates the radius of the
target (7 mm). Adaptation trial cycle reflects the average of 3 reaches, one to each target location.
Shaded error bars reflect standard error of the mean (SEM). (b) Success rates during adaptation for
each trial type. The middle two bars are manipulated trials. Bars on the ends are unmanipulated
trials. Error bars reflect SEM. (c) Test phase MTs plotted against the distance moved by the
participant, averaged for each of the four conditions. Error bars reflect SEM for both the movement
distance data (horizontal error bars) andMT data (vertical error bars). (d) Regression coefficients for
movement distance (MD) and visual distance (VD) from the regression analysis of MTs. Error bars
reflect SEM. (e) Summed ΔBIC for the three main models (INT = integration; MD = movement
distance; VD = visual distance), computed relative to the average BIC for all three models to
visualize differences. Lower values translate to stronger model fits. MT = movement time; BIC =
Bayesian information criterion.
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Experiment 2

Experiment 2 was identical to Experiment 1 but was conducted
online, allowing us to expand our sample size. The online format
was chosen so that actions would be restricted to small mouse
movements, significantly decreasing the range of physical move-
ments required by each condition but maintaining large visual
differences, as is typical for mouse movements in most computer-
ized settings. It was hypothesized that this restriction might reduce
the effect of the hand displacement on the ID and emphasize the
effect of the visual distance to the target.
During the 12-trial adaptation phases, participants adapted to

gain perturbations when they were present: By the last trial of the
adaptation phases, Euclidean error from the optimal movement
endpoint averaged 15 pixels, 25% of the target diameter; 95% CI [13,
16] px. Since Experiment 2 was conducted online, these errors reflect
the difference between the participant’s unmanipulated mouse
displacement and the unmanipulated mouse displacement that would
have been necessary to hit the center of the target. (These errors
cannot be cleanly translated into physical distances since computer
mice and trackpads do not report their sensitivities for security
reasons, but it should be noted that 15 px is roughly 4 mm on a screen
using a common 96 PPI resolution.) For manipulated trials,
participants slightly undershot MfarVnear, extent error: −7.3 px,
95% CI [−21.7, 10.9] and significantly overshot MnearVfar, 54.8 px,
95% CI [27.7, 81.9] as in Experiment 1. Unlike in Experiment 1,
Euclidean errors differed subtly between manipulated and unmanip-
ulated trials: Errors from optimal solution on the last training trial
within a block were significantly larger when the cursor gain was
manipulated, paired t test, t(26)=−4.3, p= 2.4× 10−4, dz=−0.92 by
an average of 4.4 px, 95% CI [2.3, 6.6] px (Figure 3a). This also
corresponded to differences in success rates (Figure 3b): Across all
training trials, manipulated trials had significantly lower success rates,
paired t test, t(26) = 2.69, p = .01, dz = 0.54 by an average of 2.1%,
95% CI [0.5%, 3.6%]. Nonetheless, participants averaged 96.8%,
95%CI [95.5%, 98.0%] success across all adaptation trials, indicating
a high degree of success and rather small accuracy differences
between conditions. Success rates in the second half of each
adaptation block averaged 96.9%, 95% CI [95.9%, 97.8%].
Test phase MTs were once again predicted by both move-

ment distance and visual distance (Figure 3c), but not success rate
during training: An ANOVA analysis over the LMER on MTs
showed a marginal main effect of movement, F(1, 85.20) = 3.64,
p = .060 and a significant main effect of visual distance,
F(1, 78.80) = 25.06, p = 3.3 × 10−6 (Figure 3d). However,
success rate did not significantly predict MT, F(1, 82.99)= 0.33, p=
.57. As hypothesized, due to the reduced range of the physical
displacements, the effect of movement distance was reduced.
This result was further supported by modeling (Figure 3e): while

the INTmodel (summedΔBIC=−17) beat theMDmodel (summed
ΔBIC = 50, meanΔBIC = −2.51, 15/27 better fit by INT), it did not
beat the VDmodel (summedΔBIC=−33, meanΔBIC= 0.59, 9/27
better fit by INT). We note that the VD model performs well here
because it has fewer parameters than the INT model, and the data
indicate dominance of visual distance, as hypothesized. The INT
model fit participants’ trial-typeMTs with a pseudo-R2 of 0.53 (MD:
0.19, VD: 0.46). The λ parameter of the multisensory integration
(MSI) model, the relative weight between visual and movement
distances, had a mean value of 0.50, 95% CI [0.35, 0.65], indicating

that roughly 50% of the D term in Fitts’ Law was reflective of the
movement distance and 50% was reflective of the perceived visual
distance of the target.

As a further control, the EW model, which controls for task
geometry-induced differences in difficulty, did not win by BIC
(mean ΔBIC = −0.85, 13/27 better fit by MSI, pseudo-R2 = 0.53).
Having shown that we can downweight the role of movement
distance and upweight the role of visual distance in Fitts’ Law, we
next tried to do the opposite.

Experiment 3

The results of Experiments 1 and 2 suggest that both movement
and visual distances can influence Fitts’ Law, and that the role of
visual distance can be amplified by restricting the range of possible
movement distances relative to visual distances. In Experiment 3, we
asked if the opposite effect could be elicited, such that movement
distance could be made to primarily shape MTs, even under the
restricted movement range conditions of Experiment 2. Thus, in
Experiment 3, we provided only endpoint feedback during the
adaptation phase. This degraded visual feedback should, we
reasoned, lessen the salience of the visual aspects of the task during
motor planning.

Due to the degraded visual feedback, participant errors were
predictably larger in Experiment 3 compared to Experiment 2.
Movement errors on the last trial of the adaptation phase were on
average 67.6 px, 89% of the diameter of the target or roughly 1.8
cm on the screen assuming 96 PPI, 95% CI [54, 81] px. Errors
from the optimal solution on perturbation trials were significantly
larger compared to unmanipulated trials, paired t test, t(26) =
−2.51, p = .02, d = −0.38 by an average of 14.7 px, 95% CI [3, 27]
px (Figure 3f). For manipulated trials, participants undershot
MfarVnear, extent error: −23.5 px, 95% CI [−46.6, −0.3], and
overshot MnearVfar, 47.1 px, 95% CI [21.6, 72.5]. Manipulated
trials also had lower success rates, paired t test, t(26) = 4.72, p =
7.0 × 10−5, d = 0.46, by an average of 7.7%, 95% CI [4%, 11%]
(Figure 3g). Overall, success rates were substantially lower in
Experiment 3 (as was expected, given the lack of online feedback),
with average success across all training trials at 41.4%, 95% CI
[35%, 48%] despite the lengthened adaptation phase (21 trials).
Success rates in the late half of each adaptation block (i.e., after
learning asymptote) averaged 43.5%, 95% CI [38.6%, 48.4%].

Participant test phase MTs were well predicted by movement
distance, but, critically, not by visual distance or success rate
(Figures 3h, 3i): ANOVA analysis revealed a main effect of move-
ment distance on MTs, F(1, 80.09) = 36.36, p = 4.8 × 10−8 but
no significant effect of visual distance, F(1, 85.38) = 0.01, p = .93
nor success rate, F(1, 87.73) = 0.03, p = .85.

Model comparison (Figure 3j) using BIC indicated that the MD
model (summedΔBIC=−28) was the best-fitting model (compared
to INT [summed ΔBIC = −3]: mean ΔBIC = −0.88 [relative to
MD], 24/27 better fit by MD; compared to VD [summed ΔBIC =
31]: mean ΔBIC = −2.18, 20/27 better fit by MD). However, the
INT model had the highest pseudo-R2 at 0.46 (MD: 0.41, VD: 0.12).
The INT model’s ability to capture more of the variance in MTs did
not overcome the BIC penalty for an additional parameter. The λ
parameter, which estimates the relative contribution of visual and
movement distances on D, had a mean value of 0.76, 95% CI [0.64,
0.87], indicating that roughly 76% of the D term in Fitts’ Law was
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reflective of the movement distance and 24% was reflective of the
perceived visual distance of the target. The control EW model was
largely equivalent to the INT model (mean ΔBIC = −0.16 in favor
of EW, 13/27 better fit by EW).

These observations support the conclusion that MTs in
Experiment 3 were primarily determined by movement distances
as opposed to visual distances, in stark contrast to Experiment 2.
Given that the underlying gain manipulation in Experiment 3 was
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Figure 3
Experiment 2 and Experiment 3 Results

Note. (a, f) Learning curves of errors from the optimal solution during the adaptation block for
each condition averaged across blocks for Experiments 2 and 3, respectively. Shaded error bars
reflect standard error of the mean (SEM). Dashed line indicates the radius of the target (30 and 37.5
px, respectively). (b, g) Success rates for each trial type during adaptation. Error bars reflect SEM.
(c, h) Test phase MTs plotted against the distance moved by the participant, averaged across all
four conditions for Experiments 2 and 3, respectively. Error bars reflect SEM for both the
movement distance data (horizontal error bars) and MT data (vertical error bars). (d, i) Regression
coefficients for movement distance (MD) and visual distance (VD) from the regression on MTs.
Error bars reflect SEM. (e, j) Summed ΔBIC for the three main models (INT, MD, VD) for
Experiments 2 and 3, respectively. Lower values translate to stronger model fits. MT =movement
time; INT = integration.
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identical to Experiments 1 and 2, and that the movement demands
fully matched Experiment 2, the flip in the factor shaping MTs from
visual to movement distance appeared to be driven solely by the
change in the visual feedback context. Taken as a whole, the results
of Experiments 1–3 point to movement and visual distance
independently influencing the D term in Fitts’ Law.

Experiment 4a

Experiments 1–3 employed conventional gain perturbations in
which small displacements, Δx, are displayed as Δx*gain. As a
result of this, the “effective width” (i.e., differences in motor error
tolerance in gain vs. nongain contexts; see Method section) of the
movement targets varies across conditions with different gains, in
that gain can inflate or deflate errors in initial movement direction
and extent. (For example, when gain = 2, any slight deviation from
the correct movement amplitude would be magnified twofold in the
observed visual error.) To control for this geometric difference,
which is inherent to gain perturbations, Experiments 4a and 4b
employed a novel translational perturbation where the visual
feedback was “teleported” along the straight-line path to the target
to either a greater or shorter amplitude, depending on the gain
(Figure 4a). The size of the effective area of successful reach vectors
was thus standardized for all conditions.
Due to the discrete nature of this perturbation, only endpoint

feedback could be provided. Despite this degraded feedback,
participants learned to adequately adapt to the perturbation during
gain trials, achieving average errors of 13.3 mm, 67% of target
diameter; 95% CI [11, 16] mm on the last trial of the adaptation
phase. Errors from the optimal solution were not significantly
different between manipulated and unmanipulated trials, paired t
test, t(9) = −0.86, p = .41, d = −0.33. Extent errors averaged −0.2
mm, 95%CI [−7.1, 6.8] for MfarVnear and 4.0 mm, 95%CI [0.7, 7.3]
for MnearVfar, a slight overshoot. Success rates during training were
also not significantly different between manipulated trials and
unmanipulated trials, paired t test, t(9) = 2.16, p = .06, d = 0.39.
Overall, success rates were low, averaging 40.3%, 95% CI [32%,
48%]. Success rates in the late half of each adaptation block (i.e.,
after learning asymptote) averaged 43.4%, 95% CI [36.9%, 50.0%].
Even with a rather different perturbation applied, the test phase

results of Experiment 4a largely replicated the results of Experiment
3 (Figure 4b). The ANOVA analysis revealed a main effect of
movement distance, F(1, 29.57) = 53.60, p = 4.1 × 10−8 but not
visual distance, F(1, 26.92) = 0.01, p = .92 on test phase MTs
(Figures 4c, 4d). As in the previous experiments, success rate did
not significantly predict MT, F(1, 30.71) = 0.30, p = .59, further
suggesting that success during training did not explain differences in
movement vigor during the test phase.
Modeling further corroborated these results (Figure 4e): By BIC

comparison, the INT (summedΔBIC= 31) andMD (summedΔBIC=
32) models were largely identical in fit quality (meanΔBIC=−0.08 in
favor of MD, 6/10 better fit by MD). However, the INT model had a
pseudo-R2 of 0.89, as opposed to the MD model at 0.79. The average
value of the fitted λ parameter was 0.91, 95% CI, [0.83, 0.99],
indicating that movement distance contributed ∼91% of the D term in
Fitts’ Law. Thus, even after accounting for the effect of varying
effective target widths and altering the pattern of adaptation phase
errors across conditions relative to Experiment 3, the key results of
Experiment 3 were replicated in Experiment 4a.

Experiment 4b

We next replicated Experiment 4a in an online sample. As with
Experiment 3, the degraded visual feedback led to relatively large
errors on the last trial of the adaptation phase (Figure 4g), averaging
67.7 px, 89% of the diameter of the target; 95% CI [58, 78] px;
roughly 1.8 cm assuming 96 PPI. Errors from the optimal solution
were marginally different between manipulated and unmanipulated
trials, paired t test, t(29) = −2.00, p = .054, d = −0.33, with errors
10.5 px, ∼2.8 mm assuming 96 PPI; 95% CI [0, 21] px larger for
manipulated trials. Extent errors averaged −0.1 px, 95% CI [−26.3,
26.1] for MfarVnear and 40.1 px, 95% CI [21.3, 58.9] for MnearVfar,
overshooting by just over one target radius. Unmanipulated trials
had significantly higher success rates, paired t test, t(29) = 9.32, p =
3.2 × 1010, d = 0.96, by an average of 11%, 95% CI [9%, 13%]
(Figure 4h). The average success rate across all training trials was
37.0%, 95% CI [33.3%, 40.6%]. The average success rate across
training trials in the second half of each adaptation block was 40.1%,
95% CI [36.3%, 44.0%].

The ANOVA revealed a main effect of movement distance, as
expected, F(1, 95.36) = 10.93, p = 1.3 × 10−3, and a significant
main effect of visual distance, F(1, 88.02)= 5.29, p= .02. However,
the longer visual distances actually predicted lowerMTs (Figure 4j),
an effect that was largely driven by faster MTs on the condition
where the movement goal was near, but the visual target was far
(Figure 4i). Interestingly, for this condition, when compared to the
unmanipulated near-movement condition, participants had margin-
ally larger errors, t(29) = 1.77, p = .09, d = 0.38; 13.8 px, 95% CI
[−2, 30] px and significantly lower success rates, t(29) = 6.76, p =
2.04 × 10−7, d = 0.86; 12%, 95% CI [9%, 16%] during adaptation
phases, yet had faster MTs during the test phase, t(29) = −2.40, p =
.02, d = −0.22; 52 ms, 95% CI [8, 96] ms. There was not a
significant main effect of training success rate on test phase MTs,
F(1, 97.69) = 0.65, p = .42.

Modeling supported the conclusion that MTs were predominantly
driven by movement distance (Figure 4k): The MD model (summed
ΔBIC=−35) wonmodel comparison byBIC, beating the INTmodel
(summed ΔBIC = 0, mean ΔBIC = −1.17 [relative to MD], 27/30
better fit by MD) and the VD model (summed ΔBIC = 36, mean
ΔBIC=−2.37, 22/30 better fit byMD). The INTmodel had a slightly
higher pseudo-R2 compared to the MDmodel (MSI: 0.38, MD: 0.36,
VD: 0.05). We note that the lower pseudo-R2 values in general arise
from themodels’ inability to account for the aforementioned violation
of Fitts’ Law in one of the conditions. The average value of the fitted λ
parameter was 0.79, 95% CI, [0.68, 0.91], indicating that movement
distance contributed 79% of the D term in Fitts’ Law.

Overall, the key test phase findings of both Experiments 4a and 4b
did not differ from the results of Experiment 3—this echoes the poor
fit of the EWmodel in the previous studies, and further suggests that
the key results of our study were likely not driven by differences in
target effective widths nor other difficulty considerations. Instead,
the four experiments suggest that both movement distance and
visual distance can influence Fitts’ Law.

Estimating the Role of Visual and Movement
Distances on Initial Movement Plans

Experiments 1–4 demonstrate that, under different conditions,
movement distance and visual distance to a goal can have varying

T
hi
s
do
cu
m
en
t
is
co
py
ri
gh
te
d
by

th
e
A
m
er
ic
an

P
sy
ch
ol
og
ic
al

A
ss
oc
ia
tio

n
or

on
e
of

its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le

is
in
te
nd
ed

so
le
ly

fo
r
th
e
pe
rs
on
al

us
e
of

th
e
in
di
vi
du
al

us
er

an
d
is
no
t
to

be
di
ss
em

in
at
ed

br
oa
dl
y.

INDEPENDENT INFLUENCES ON FITTS’ LAW 9



T
hi
s
do
cu
m
en
t
is
co
py
ri
gh
te
d
by

th
e
A
m
er
ic
an

P
sy
ch
ol
og
ic
al

A
ss
oc
ia
tio

n
or

on
e
of

its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le

is
in
te
nd
ed

so
le
ly

fo
r
th
e
pe
rs
on
al

us
e
of

th
e
in
di
vi
du
al

us
er

an
d
is
no
t
to

be
di
ss
em

in
at
ed

br
oa
dl
y.

Figure 4
Experiment 4 Results

Note. (a) Modified gain perturbation employed in Experiment 4. Participants reaches were
evaluated as though the target were at the movement distance for that trial type. Errors from that
virtual target (dashed) were then displayed at the visual distance (filled). (b, g) Learning curves of
errors from the optimal solution during the adaptation block for each condition averaged across
blocks for Experiments 4a and 4b, respectively. Shaded error bars reflect standard error of the mean
(SEM). Dashed line indicates the radius of the target (10 mm and 37.5 px, respectively). (b, g)
Success rates for each trial type during adaptation. Error bars reflect SEM. (c, h) Test phase MTs
plotted against the distance moved by the participant, averaged across all four conditions for
Experiments 4a and 4b, respectively. Error bars reflect SEM for both the movement distance data
(horizontal error bars) andMT data (vertical error bars). (d, i) Regression coefficients for movement
distance (MD) and visual distance (VD) from the regression on MTs. Success rate, the other
predictor in the model, is not depicted since it does not share the units of distance. Error bars reflect
SEM. (e, j) Summed ΔBIC for the three main models (INT, MD, VD) for Experiments 4a and 4b,
respectively. Lower values translate to stronger model fits. MT = movement time; INT =
integration.
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roles on movement durations. Specifically, when movement range
was reduced, visual distance seems to exert a greater role on MTs,
and, when visual feedback is degraded, movement distance exerts a
greater role on MTs. How much of the observed MT effects can be
ascribed to planning factors initialized before the start of movement
execution?
To assess this, we performed a post hoc analysis on TTMV during

the no-feedback test phases. We restricted our analysis to only the
in-lab experiments (Experiments 1 and 4a), where we could obtain a
reliable estimate of TTMV. As was done with the MTs, we fit a linear
mixed-effects regression model on the TTMVs, with movement
distance, visual distance, and the success rate in the second half
of each adaptation mini-block. Again, success rate was included as a
predictor to control for the effect of success on movement vigor.
Fixed effects were extracted using a Type III ANOVA, as above.
In Experiment 1, only the visual distance of the target predicted

TTMVs, F(1, 27.76) = 4.81, p = .04, but not movement distance,
F(1, 29.23) = 1.12, p = .30 or success rate, F(1, 29.28) = 0.02,
p = .90. Thus, initial movement vigor in Experiment 1, where
continuous visual feedback was provided during the preceding
adaptation phase, was only reliably predicted by visual target
distance. The lack of a significant effect of movement distance could
be because TTMV was a noisier metric than MT or that initial
movement vigor only reflects planning components related to visual
inputs, while movement distance exerts its effect on MT during the
deceleration phase. However, in Experiment 4a, only movement
distance to the target predicted TTMV, F(1, 30.58) = 15.12, p =
5.1 × 10−4, but neither visual distance, F(1, 26.97) = 0.12, p = .73
nor success rate, F(1, 32.09) = 0.06, p = .81.
As an additional control, we re-conducted the main LMER

analyses on movement durations after excluding all trials where the
reaching angle at midpoint differed from the reaching angle at
endpoint by ±10° or more. This control analysis aimed to eliminate
any trials where corrective moments were suspected, though may
also have excluded particularly curved ballistic reaches. This
analysis excluded only a small proportion of test phase trials across
all experiments, Experiment 1: 3.1%, 95% CI [1.3%, 4.9%];
Experiment 2: 8.6%, 95% CI [6.1%, 11.1%]; Experiment 3: 8.0%,
95% CI [3.7%, 12.3%]; Experiment 4a: 1.6%, 95% CI [0.3%,
12.9%]; Experiment 4b: 8.4%, 95% CI [4.0%, 12.8%], suggesting
that movements were generally rather straight. Excluding these trials
changed none of the main results of the LMER analysis on MTs
across all experiments. Thus, we did not observe evidence that
corrective movements in the test phase played a role in explaining
our results. Taken together, our analysis and velocity analyses above
complement our earlier MT analyses, reflecting how visual and
movement distances can independently shape movement planning
processes.

Discussion

What information does the brain use to predict the difficulty of
a movement? Across four experiments we sought to clarify the
nature of the movement distance (D) term of Fitts’ Law (Figure 1d).
We leveraged gain adaptation (Figure 1b) to create conditions
where both visual and motor aspects of a reaching task could
independently influence movement times (MTs). Our results showed
that when continuous visual feedback is provided during adaptation
(Experiments 1 and 2), the visually perceived distance of a goal and

the reach amplitude needed to reach that goal both contributed to
MT (Figures 2 and 3). The role of vision was especially pronounced
when movement amplitude was restricted (Experiment 2; Figure 3).
However, when visual feedback was degraded to only appear at the
endpoint of a movement, visual goal distance no longer predicted MT
even within the same restricted movement context (Experiment 3;
Figure 3). When potential condition difficulty differences due to the
geometry of the task were accounted for (Experiments. 4a and b;
Figure 4), these latter results remained largely unchanged, and task
success during the adaptation phase was unable to predict the key test
phase MT results across all experiments. Crucially, all key results
were quantified in a test phase where visual feedback was withheld;
thus, differences in MTs could not be easily explained by online,
corrective movements or similar reactive strategies, a conclusion that
was further supported by analyses that focused on initial movement
vigor or that excluded suspected corrective movements.

What is the underlying process that explains our findings? Across
all experiments, success rates during adaptationwere not predictive of
test phase movement durations, so we do not believe that success or
rewardwas the primary driver of the observedmovement time effects.
Moreover, our analyses were constrained to a test phase without
visual feedback and were generally replicated when restricting our
analysis to an early phase of movement: this supports the idea that
the distance effects are relevant to motor planning, not feedback
control. We believe that our results suggest that visual distance
cues, in conjunction with past movement experiences, may provide
a contextual reference during movement planning, perhaps by
modulating the motor system’s expectations of movement difficulty.
When movement range is limited, visual representations may come
to dominate (Experiment 2). When visual feedback is degraded
(Experiment 3), the effect of visual distancemay be diminished due to
a fundamental change in the planned control policy, where the visual
correlates of movement plans are now less relevant and purely motor
variables may play a more pronounced role.

We suggest that visual distance may exert its effect during
an early motor planning stage (Al Borno et al., 2020). The visual
distance to the goal, even when decoupled from the required
movement distance, may act as a “prior” on the expected difficulty
of a movement. Alternatively, it is also possible that larger visual
distances may also increase the sensory uncertainty at the target
location, as the target moves further out in the periphery relative to
the starting hand location. This additional uncertainty may lead to
higher difficulty expectations, and thus slow down MTs. Whether
visual target distance or uncertainty (or both) drive our observed
effects is unclear—future studies could attempt to isolate spatial
distance effects versus spatial uncertainty effects in Fitts’ Law.

Another open question is the role of proprioceptive/kinesthetic
feedback in our results. It could be that, during the adaptation phase,
participants weighed kinesthetic input more heavily in Experiments 3
and 4 (when only terminal endpoint feedback was provided), perhaps
explaining why test phase movement durations in these experiments
were better predicted by movement, rather than visual, distance.
Indeed, the distinct behavioral effects of online versus endpoint
feedback we observed here echo findings in motor adaptation that
show similar tradeoffs between vision and proprioception in online
(visual emphasis) versus endpoint (proprioceptive emphasis) feed-
back conditions (Hayashi et al., 2020; Izawa & Shadmehr,
2011). Supporting a role for proprioception here, past studies on a
deafferented subject showed that proprioception directly influences
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the relationship between movement duration and movement
amplitude (Ingram et al., 2000). How could differences in the
weighting of proprioception and vision influence feedforward motor
planning and MTs in our task? Speculatively, this could be driven by
top-down attention to each sense, which leads to a bias in MTs that
is carried over to the test phase—attention to proprioception may
bias motor planning toward representations in intrinsic body-based
coordinates, while attention to visual outcomes (say, attention to the
online cursor) may bias planning toward representations in extrinsic
world-based coordinates. These internal and external reference
frames of planningmay contribute to differences inMTs as a function
of visual or movement distance, as observed in our experiments.
Future investigations should directly measure the contributions of
proprioception to the results observed here.
We think that it is also worth considering that our gain perturbation

may be compensated for by a combination of explicit and implicit
motor learning processes (Krakauer et al., 2004; McDougle et al.,
2016; Taylor et al., 2014). That is, it is currently unclear if people
compensated for the gain perturbations implicitly, explicitly, or
in some combination of the two. Depending on how they learned,
different interpretations of the test phase results could be favored
(i.e., focusing on conscious selection processes vs. implicit planning
processes). Future work could target the role of explicit cognitive
processes versus implicit processes in our task, and in Fitts’Lawmore
generally.
We highlight several limitations in our study. First, gain

perturbations inherently alter error “tolerance,” as similar movement
commands can result in different magnitudes of visual error.
However, we think that it is unlikely that test phase MTs were
significantly impacted by the latent changes in task geometry due to
gain perturbations: When we directly controlled for these intrinsic
condition difficulty differences in Experiment 4, the results of
Experiment 3 largely replicated. While this does not fully rule out a
potential role of the “effective width” (see Method section) of reach
targets in our task, in Experiments 1–3, vastly different visual and
movement distance effects were observed even when effective widths
did not differ across the experiments.
Second, in general, when task performance during the adaptation

phase was relatively weaker, test phase MTs were slower, raising
concerns of task success acting as a confound. This result makes
some sense (Adam, 1992; de Grosbois et al., 2015; Fitts, 1954;
Fitts & Peterson, 1964; van Donkelaar, 1999)—Fitts’ Law relates
the difficulty of a movement to its duration. However, we did not
always see a 1–1 relationship between task success during the
adaptation phase and the key MT results in the testing phase. More
importantly, all of our key regression results controlled for effects of
task success. It can be difficult to fully separate effects of accuracy
and movement time (their close relationship is the point of Fitts’
Law), and our study targeted MT effects following a gain adaptation
phase that may involve additional difficulty variables not accounted
for in our models. For example, in Experiments 1 and 2, participants
may have learned to associate particular visual distances with the
ease of cursor control and the cursor speed. However, if these
associations persisted into the probe phase where no feedback was
provided, this should have been revealed in our analyses of error and
task success, but success rate during adaptation did not predict MTs
when movement and visual distance were also included as model
predictors. Thus, we believe that our results are parsimoniously
explained by our computational models targeting the D term of Fitts’

Law. Future studies could further explore these and other aspects
of difficulty.

More broadly, we think our results could contribute to a synthesis
of documented amendments to Fitts’ Law (Crossman & Goodeve,
1983; de Grosbois et al., 2015; Heath et al., 2011). First, our findings
are consistent with literature suggesting that strategic attention to a
range of task dimensions shape Fitts’ Law (Adam, 1992). Others
have also noted that past movement history can influence movement
durations in a manner that is not consistent with Fitts’ Law (Tang
et al., 2018). Our results also echo and extend findings that Fitts’
Law can emerge at perceptual or mental “simulation” stages of
motor planning (Decety & Jeannerod, 1995; Grosjean et al., 2007),
are consistent with findings that visual illusions can bias Fitts’ Law
(van Donkelaar, 1999), and comport with studies relating the law to
more abstract features of motor preparation and planning (Augustyn
& Rosenbaum, 2005; Jax et al., 2007). Incentives also modulate
movement durations (Ashworth-Beaumont & Nowicky, 2013;
Bogacz et al., 2010; Du et al., 2022; Listman et al., 2021; Thura
et al., 2014), further supporting flexibility in the strategies the brain
employs when selecting movement parameters. We also note that
other studies of Fitts’ Law in virtual environments, where visual and
physical dimensions of the target do not necessarily match, largely
align with our results in showing that both the visual and motor
dimensions can predict movement durations under specific contexts
(Usuba et al., 2019, 2021). Future investigations can address other,
perhaps more cognitive indicators of difficulty, such as the visually
inferred weight or unwieldiness of a tool (Ellis & Lederman, 1993).

As interest in the applicability of Fitts’ Law to virtual and
augmented reality grows (Rohs et al., 2011; Rohs & Oulasvirta,
2008; Sambrooks &Wilkinson, 2013), it is important to understand
the law’s underlying mechanisms. We demonstrated here that
under certain conditions, fundamental variables in Fitts’ Law are
responsive both to perceptual context (visual goal distance) and
physical requirements (movement distance). Developers of
augmented and virtual reality applications could leverage this
observation in optimizing or calibrating the feedback they provide to
users. Our results may also inform investigations into the neural
correlates of action selection and the speed–accuracy trade-off (Al
Borno et al., 2020; Harris & Wolpert, 1998), perhaps serving to
illuminate distinct contextual factors that the motor system
represents as it prepares fast and accurate actions.

Constraints on Generality

Fitt’s Law is a surprisingly robust psychophysical law with
broad applicability. Samples reported here may not be generally
representative of the global population as participants were recruited
from the United States and were between the ages of 18–40, and
were largely right-handed. Nonetheless, we believe these results
should broadly apply to all neurotypical adults, as they relate to the
typical performance of goal-directed movements.
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