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Control of Movement

Linking motor working memory to explicit and implicit motor learning
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Abstract

Explicit and implicit components of motor learning have been widely studied, but the extent to which movement information
encoded and maintained in working memory (Motor Working Memory; MWM) contributes to motor learning remains unclear.
Building on recent work pointing to separate effector-independent (abstract) and effector-specific (limb-bound) information for-
mats in MWM, we conducted a correlational study in which human participants completed both a MWM task and a visuomotor
rotation task. We observed that: 1) the fidelity of effector-independent MWM was selectively correlated with the degree of explicit
visuomotor learning, and 2) the fidelity of inferred effector-specific MWM was selectively correlated with the degree of implicit
visuomotor learning. Together, these results point to a possible relationship in which different formats of motor information
stored in WM may contribute to distinct components of long-term motor learning, shedding light on a novel cognitive-motor
interaction.

NEW & NOTEWORTHY Working memory is important for motor learning, yet its role beyond visuospatial domains remains
unclear. Here, we examine whether and how non-visual Motor Working Memory (MWM) is related to long-term motor learning.
Specifically, we identified selective correlations between effector-independent MWM and explicit motor learning processes,
and between effector-specific MWM and implicit motor learning processes. These findings extend prior research relating
visuospatial working memory to motor learning and highlight distinct MWM mechanisms supporting different learning
processes.

adaptation; intermanual transfer; motor learning; skill learning; working memory

INTRODUCTION

Motor skills are typically associated with procedural mem-
ory, a long-term memory system that refines and stabilizes
behaviors through the gradual process of motor learning.
Behavioral and neurophysiological studies have also pointed
to a separate, short-term form of motor memory—“Motor
Working Memory” (MWM)—which may also contribute to
skilled motor behavior (1). In contrast to other domain-spe-
cific workingmemory systems, such as visual working mem-
ory, the concept of a dedicatedMWM system in the brain has
only recently begun to receive attention. Thus, many basic
questions about the role of MWM in motor behavior remain
unanswered, even though MWM may be a critical substrate
of cognitive-motor interactions. Here, we attempt to address
one such open question: how might MWM relate to motor
learning?

Importantly, both MWM and motor learning are not uni-
tary processes and contain dissociable subcomponents.
Current models of motor learning highlight two main proc-
esses: 1) an explicit process, dominant during early stages of
learning, which is characterized by deliberate decision-mak-
ing and the application of cognitive strategies about how to
move; and 2) an implicit process,which involves slow, uncon-
scious error-driven recalibration of movements to gradually
adapt internal sensorimotormappings (2–9).

Similarly, MWM also has dissociable components, as we
have argued in recent work (10). Before describing those
components, we first define MWM. Working memory (WM)
in general involves the active maintenance and manipula-
tion, on a seconds-to-minutes timescale, of information in a
mental workspace (11–14). Motor WM applies this concept to
motor information, and is defined as a WM subsystem that
encodes, integrates, and maintains movement features, and
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which is not fully reducible to visuospatial or somatosensory
WM (1).

Initial support for a movement-specific working memory
system came from studies investigating how people per-
form short-term recall of arm movements without visual
feedback. This work revealed classic WM effects, including
capacity constraints, interference effects, and short-term
forgetting, when people tried to recall movements seconds
after executing them (15–21). Movements that are planned
and executed by subjects, as opposed to movements admin-
istered passively (e.g., via an experimenter or robotic device
moving the arm), are better maintained inMWM, suggesting
that afferent somatosensory input is not the only feature
encoded into MWM (22). WM-like effects are also seen for
movements without salient spatial trajectories, such as hand
gestures (21) and grip forces (23), suggesting that MWM is not
reducible to a specialized form of spatial WM.

Neurophysiological evidence also points to a distinct
MWM system: research in nonhuman primates has revealed
retrospective short-termmemory traces that encode recently
completed eye movement trajectories, manifested as per-
sistent neural firing in the dorsolateral prefrontal cortex
(dlPFC) (24, 25). And recent neuropsychological work in
humans shows that lesions to sensorimotor cortex can
lead to selective deficits in maintaining observed move-
ments in WM, but do not affect WM capacity for nonmotor
content (26). In addition, neural recordings in humans
point to separable motor and visual WM codes in the brain
during memory maintenance (27, 28). Taken together, pre-
vious work points to the existence of a dedicated MWM
system that flexibly integrates and maintains afferent and
efferent motor information within a short-term memory
buffer (1).

As noted earlier, MWM, like motor learning, has dissoci-
able components. Recent findings from our laboratory sug-
gest that MWM encodes movement-related information in at
least two formats: effector-specific and effector-independent
codes (10). Effector-specific information refers to content
that is mapped to the particular body parts involved in an
action, potentially including features of afferent somatosen-
sory information and efferent motor commands. In contrast,
effector-independent information captures abstract move-
ment features that can be flexibly transferred across limbs
(e.g., from your right arm to your left) or even across individ-
uals, as in the case of imitation (29, 30). For instance, when
learning a new dance move, one encodes not only how the
action feels in specific limbs (effector-specific), but also the
world-referenced spatiotemporal trajectory of the movement
itself (effector-independent), which could in theory be
mapped onto untrained effectors. Using a novel MWM task
combined with an intermanual transfer manipulation, our
recent study demonstrated that much of people’s ability to
recall reachingmovements over short timescales likely relies
on effector-independent information, and that this informa-
tion is maintained separately from somatosensory or visuo-
spatial WM (10).

With these previous findings in hand, here we investigated
correlations between MWM and motor learning by isolating
the distinct subcomponents of both memory systems. We
hypothesized that: 1) individual differences in effector-inde-
pendent MWM fidelity would selectively correlate with the

degree of explicit motor learning, and 2) individual differen-
ces in effector-specific MWMwould correlate positively with
the degree of implicit motor learning. To test these hypothe-
ses, we designed a correlational study using two tasks: a
visuomotor rotation (VMR) task designed to dissociate
explicit and implicit motor learning, and a non-visual MWM
task designed to dissociate effector-specific and effector-
independent components. Our hypotheses were grounded in
theoretical models of motor learning and previous empirical
findings linking various working memory capacities to dif-
ferent learning mechanisms. First, explicit learning in VMR
tasks primarily involves deliberately “re-aiming” move-
ments to counteract performance errors, a computation
that requires remembering successful actions over short
timescales and, putatively, spatial reasoning about the per-
turbed environment (3, 9, 31–33). Although effector-inde-
pendent MWM appears to be functionally distinct from
visuospatial working memory (1, 10), both effector-inde-
pendent MWM and explicit motor learning systems likely
encode abstract, spatial information that can be flexibly
transferred across different effectors (9, 34, 35). We there-
fore reasoned that effector-independent MWMmight corre-
late with explicit motor learning.

In contrast, implicit motor learning involves the fine-
tuning of movement kinematics to gradually (and uncon-
sciously) counteract sensory prediction errors (6, 8).
Critically, implicit motor learning does not reliably trans-
fer across limbs and is thought to be closely related to
somatosensory processing (34, 36–38). Thus, we reasoned
that the fidelity of effector-specific MWM may correlate
with the observed degree of implicit motor learning. Our
correlational study was designed to test these specific
hypotheses.

MATERIALS AND METHODS

Participants

The study was reviewed and approved by Yale University’s
Institutional Review Board, and all participants provided
written informed consent before participation. A total of 34
participants were recruited through a psychology pool and
received class credit for their participation. Two partici-
pants were excluded due to incomplete data collection,
and one participant was excluded for aberrant explicit learn-
ing behavior (i.e., negative explicit learning in the VMR task,
which was also less than three standard deviations from the
mean explicit learning observed across the sample). Of the
remaining 31 participants, 17 were females, with a mean age
of 18.8 ±0.75 yr (SD), and 27 participants were right-handed,
as assessed by the EdinburghHandedness Inventory (39).

Apparatus

Both tasks were conducted using a Kinarm End-Point Lab
(BKIN Technologies Ltd., Kingston, ON, Canada), equipped
with a low-friction, two-joint robotic arm fitted with a cylin-
drical handle that enabled planar reaching movements by
passively guiding participants or being actively guided by
them. Participants were seated in an adjustable chair with
their feet on the ground in two outlined boxes, discouraging
them from moving their legs throughout the experiment.
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The hand not holding the robot’s handle at any given
moment rested flat on a mousepad on the workspace table.
Participants sat with their foreheads resting against a soft
padmounted to a horizontal LCDmonitor. The monitor was
mounted parallel to the table, facing a semi-silvered mirror,
allowing them to comfortably view the presented instruc-
tions and visual stimuli while preventing them from seeing
their hands below the mirror. Furthermore, participants
wore a fabric bib around their necks, which was fastened to
the mirror and fully occluded their upper bodies. An experi-
menter remained in the room for the duration of the study to
monitor participants’ adherence to instructions and postural
requirements.

Motor Working Memory Task

The only visual stimuli participants received throughout
the MWM task were text prompts that appeared outside the
reaching workspace. At no point did participants see their
hands, arms, or any indication of their arm position, nor did
they receive any performance feedback throughout the task.
The MWM task was always completed before the VMR
task. Participants first completed a five-trial practice block
(excluded from analysis) to become accustomed to the robot
and ask any task-related questions. Once the experimenter
was confident that the participant understood the instruc-
tions, they proceeded to complete two experimental blocks
of 48 trials each. Participants were allowed to rest briefly
between blocks but remained seated throughout.

Each trial consisted of three phases: encoding, mainte-
nance, and retrieval (Fig. 1A). Before each trial, participants
were instructed to grasp the robot’s handle with their right
hand, which then guided them to the “home” position,
located �13 cm from their chest along the midline. During
the encoding phase, participants were passively guided by
the robot in outward reaching trajectories to four different
locations, returning to the home position between each
movement. While moving, a number was displayed above
the workspace, indicating the current movement in the
sequence (e.g., participants saw “#1” during the first move-
ment, “#2” during the second, and so on). Each movement
lasted 800 ms. At the end of each outward movement, the
robot paused for 1 s before returning to the home position,
where the hand rested for an additional 1 s between move-
ments. There were 12 possible invisible targets 9 cm from the
home position, evenly spaced between 15� and 165�. Target
locations were pseudorandomly selected to ensure equal
sampling throughout the task, with no repetitions within a
trial and aminimum angular difference of ±25� between con-
secutivemovements in a given sequence.

After encoding the four movements, participants were
required to maintain all four movements in working mem-
ory for 3 s. During this period, they were instructed to either
1) “Switch hands,” in which case they would grasp the handle
with their opposite (left) hand, or 2) “Wait,” keeping their
right hand on the handle without letting go. Following the
3-s maintenance phase, participants were prompted to recall
one of the four movements (e.g., “Recall movement #1”)
using whichever hand was currently grasping the handle. To
recall a movement, they executed an outward-reaching
motion that matched their memory of the cued movement

trajectory in the workspace (non-mirrored), then paused
at the recalled movement’s end point. The robot registered
their final location after 500ms of dwell time before guiding
them back to the home position. Participants were not
informed in advance which movement they would be asked
to recall or whether they would need to switch hands during
maintenance. The specific movement probed for recall (i.e.,
the first, second, third, or fourth movement from the encod-
ing sequence) was randomly selected and equally sampled.

A previous study from our laboratory demonstrated that
this hand-switching paradigm is an effective method for
dissociating effector-specific and effector-independent
contributions to motor working memory (10). When partic-
ipants were instructed to recall a movement from working
memory using the same hand they had used to encode it
(the “Same” condition), they could, in theory, use both effec-
tor-specific (e.g., somatosensory) and effector-independent
(e.g., abstract spatial trajectory) information to inform recall.
However, when participants switched hands (the “Switch”
condition) and recalled movements with the opposite hand,
effector-specific information was no longer applicable, mean-
ing they could rely only on effector-independent information
to inform recall (Fig. 1A).

Visuomotor Rotation Task

Visuomotor rotation tasks are widely used to assess error-
based motor learning and to measure the simultaneous con-
tributions of implicit and explicit motor learning processes
(8). Participants attempted to move a small white visual cur-
sor, representing their hand position (0.15 cm radius),
through a green target (0.5 cm radius) (Fig. 1C). A circular
home position landmark (0.5 cm), the target, and, on most
trials, the cursor was the only visual feedback provided dur-
ing the task. As in the MWM task, participants could not see
their hands or the robotic arm. On each trial, the target was
positioned at either 0�, 60�, 120�, or 180�, located 9 cm from
the central home position. Participants saw one target per
trial, and target locations were randomly selected and
equally sampled throughout the task. For each movement,
participants were instructed to reach through the target with
a fast, straight, ballistic movement. At the end of the move-
ment, the robot guided them back to the home position. If
participants waited more than 500 ms after the target
appeared, they were instructed to initiate their movement
sooner in the next trial. If their movement took more than
500 ms to cross the target radius, they were asked to move
faster.

The task consisted of four types of blocks: baseline, rota-
tion, catch, and washout. A schedule of these trials is shown
in Fig. 1D. The experiment began with 39 baseline trials (the
40th baseline trial was not recorded due to a software error).
During baseline trials, participants received continuous
online cursor feedback as they reached through a target.
Following the baseline block, the rotation block commenced.
In rotation trials, the cursor feedback was rotated ±45� rela-
tive to the reach direction, with the rotation direction coun-
terbalanced across participants. Participants thus had to
learn to counteract this 45� discrepancy to restore accurate
performance. During the rotation blocks, participants received
online feedback on their cursor position. The rotation
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phase consisted of five 32-trial blocks, totaling 160 rotation
trials.

Crucially, we also included four brief “catch” blocks inter-
spersed throughout the rotation phase. Each catch block
consisted of four trials, one for each target location, pre-
sented in a random order. Before each catch block, partici-
pants were instructed to abandon any strategy they had
been using to move the cursor to the target in the rotation
trials, and instead reach directly toward the target. During
these trials, participants did not see their cursor. Without
error feedback and without the use of any explicit aiming
strategy, the catch blocks served as a measure of partici-
pants’ implicit learning. Explicit learning was then inferred
by subtracting movement angles in catch blocks from those
in neighboring rotation trials. This approach, known as the
exclusion method, has been shown to be an effective and
straightforward technique for dissociating explicit and
implicit motor learning (40).

Finally, the experiment concluded with a 40-trial washout
block. The instructions and feedback for these trials were
identical to those of the catch trials. This blockmeasured the
final state of implicit learning and its gradual decay.

Analysis

Data preprocessing was performed using MATLAB
(MathWorks, 2024), and all analyses were conducted in R (R
Core Team, 2024). For statistical tests, all reported t tests
are two-tailed, paired tests with an a level of 0.05. In our
key correlational analyses, we report both Pearson and
Spearman correlation coefficients (for completeness), also
using an a level of 0.05.

For the MWM task, participant performance was assessed
using two metrics: variability in memory errors and absolute
memory errors, both in the angular and extent dimensions
(see RESULTS). Variability was quantified using the interquartile
range (IQR) of angular errors, chosen for its robustness to out-
liers given the limited number of trials in some data subsets
(see RESULTS). This approach follows previous studies on both
hand localization and working memory variability (41, 42).
Because our study was primarily correlational, we included
multiple MWM metrics to evaluate the robustness of any
observed correlations. We additionally computed reaction
time (RT) by taking the interval between the cue to recall the
reach and the onset ofmovement from the start position.

Figure 1.Motor working memory and visuomotor learning task design. A: experimental setup used in both tasks: participants were seated at a table with
their heads resting on a headrest and their eyes directed toward a screen that displayed visual stimuli while blocking any view of their hands and arms.
The rest of the upper body was occluded by an opaque bib. B: motor working memory (MWM) task: during the encoding phase, participants were pas-
sively guided to four locations by the robotic arm, returning to a home position between movements. During each movement they saw a number corre-
sponding to the current movement’s position in the sequence order. While maintaining this information in memory, participants were instructed either to
wait or to switch the hand grasping the handle. Finally, they were prompted to recall one of the movements using whichever hand was currently on the
handle. C: visuomotor rotation (VMR) task: during the learning phase, participants were instructed to make rapid, straight movements to direct a cursor
through a target. In rotation trials, the cursor was rotated 45� relative to their movement direction. Participants adjusted their movements to compensate
for the cursor rotation. D: schedule of trial types in the VMR task and multiple learning processes: The VMR task consisted of four trial types. Participants
first completed a baseline phase, during which they moved toward the targets while receiving veridical cursor feedback on their hand position. In the
subsequent learning phase, the cursor was rotated relative to the hand position (as described in C), requiring participants to adapt their movements.
During the learning phase, participants experienced four catch-trial periods in which they were instructed to move directly toward the target without
compensating for rotation; during these trials, no cursor feedback was provided. This method isolated implicit motor adaptation, allowing for the dissoci-
ation of explicit and implicit contributions to learning (see MATERIALS AND METHODS). Finally, in the washout phase, participants performed trials identical to
the catch trials, allowing for the measurement of the final implicit learning state.
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For the VMR task, behavior was quantified by computing
participants’ hand angles relative to the start position at the
moment they crossed the invisible ring defined by the start
position (the ring’s center) and the target location. Three key
VMR metrics were calculated: 1) Total learning, defined as
the mean hand angle for the last three trials at each target
location in the final rotation block (12 trials total); 2) Explicit
learning, indirectly measured by subtracting the last catch
block (a measure of implicit learning) from total learning;
and 3) Total implicit learning (early aftereffects), calculated
as the average hand angle for the first three trials at each tar-
get location in the washout block.

In addition to the three participants excluded (see
Participants), individual trials were removed from analy-
sis in each task based on performance. In the MWM task,
98 trials (3.3% of all data) were excluded for having an
angular error over ±90�, suggestive of a memory lapse,
hand slip, or swap error. In the VMR task, 51 trials (0.6% of
total data) were removed for having a hand angle exceed-
ing ±3 standard deviations from the block’s mean hand
angle.

RESULTS

Motor Working Memory Task

Participants (n ¼ 31) in our study performed two tasks: a
motor working memory (MWM) task and a visuomotor rota-
tion adaptation task (Fig. 1). Building on our recent finding
(10) that MWM is composed of two distinct representa-
tional codes, effector-independent and effector-specific,
we hypothesized that these codes would correlate, respec-
tively, with two dissociable components of visuomotor
learning: explicit strategic learning and implicit motor
adaptation. Such a finding would provide evidence for a
link between well-known mechanisms of long-term motor
learning and short-termmotor memory processes.

To dissociate effector-specific and effector-independent
contributions to MWM, participants passively encoded four
movements and were then asked to recall one of them using
either the same hand (Same condition) or the opposite hand
(Switch condition; see MATERIALS AND METHODS and Fig. 1A).
We reasoned that in the Same condition, both effector-spe-
cific and effector-independent information could contribute
to recall performance. However, in the Switch condition,
where participants switched effectors (hands) between
encoding and recall, only effector-independent information
could influence recall performance.

The results of the MWM experiment replicated our previ-
ous finding that the benefit of using the same hand for
encoding and recall is limited to the most recently encoded
movements [Fig. 2; Hillman et al. (10)]. Two metrics were
used to quantify MWM performance, angular variability
(IQR) in report errors and absolute angular errors (see
MATERIALS AND METHODS). For IQR, a significant difference
between Switch and Same errors was observed when the
fourth (last-encoded) movement was cued for recall [t(29) ¼
2.28, P ¼ 0.029, d ¼ 0.41]. However, no significant differen-
ces were found when the first [t(29) ¼ 0.84, P ¼ 0.409, d ¼
0.15], second [t(29) ¼ 0.56, P ¼ 0.579, d ¼ 0.10], or third
[t(29) ¼ 1.46, P ¼ 0.155, d ¼ 0.26] encoded movements were

recalled. For the mean of absolute angular errors, a signif-
icant difference between Switch and Same errors was
observed for the fourth [t(29) ¼ 4.62, P ¼ 0.0001, d ¼ 0.83]
and third [t(29) ¼ 2.21, P ¼ 0.035, d ¼ 0.40] movements,
but not for the first [t(29) ¼ 1.34, P ¼ 0.191, d ¼ 0.24] or
second [t(29) ¼ 1.26, P ¼ 0.216, d ¼ 0.23] movements.

These results align with our recent findings, which dem-
onstrate that working memory for recently encoded move-
ments exhibits attenuated interlimb transfer, whereas
movements encoded earlier undergo successful trans-
fer (10). Our previous work attributed this pattern to inter-
ference at the encoding limb rather than passive temporal
decay. Specifically, we found evidence that as additional
movements are made, they interfere retroactively with the
effector-specific (but not effector-independent) memory
(Fig. 2).

Effector-independent information is presumably available
in all trial conditions (Switch and Same); therefore, isolating
effector-specific contributions to performance is more
complicated. To approximate effector-specific MWM, two
methods were used: 1) an “effector-specific benefit” was
calculated by subtracting the Same condition’s perform-
ance error from that of the Switch condition (note that
subtracting the Switch from Same would not calculate
benefit, as the comparison is based on error). This differ-
ence was measured only for the fourth movement, as it
was the sole position that showed a reliable difference
between the Same and Switch conditions across both
MWM metrics. 2) A second, sequence-dependent “fourth-
movement” metric was quantified by calculating the dif-
ference between performance error in the fourth position
and that of the other three positions within the Same con-
dition. As previously mentioned, evidence suggests that as
new movements are executed, they retroactively interfere
with or “wash out” previously stored effector-specific
information (10). Therefore, by comparing the fourth
movement, which shows the most reliable effector-specific
benefit, with the other three movements, effector-specific
information can be approximated. Since this measure-
ment is derived only from the Same condition, it has the
added advantage of not being subject to performance dis-
ruptions that could arise from the act of switching hands
during memory maintenance.

All three of these variables, effector-independent MWM
and the two estimates of effector-specific MWM, were then
correlated with key measures from the visuomotor rotation
learning task (implicit and explicit) to examine potential
relationships between MWM codes and error-based motor
learning. We discuss this analysis in our cross-task correla-
tion section.

Visuomotor Rotation Task

The same participants who performed our MWM task also
completed a standard visuomotor rotation (VMR) task.
Participants readily adapted to the 45� visuomotor rotation
(Fig. 3A), reaching an asymptotic hand angle of 36.21� ± 5.51�

[t(29)¼ 36.63, P< 2.2e-16, d¼ 6.58].
As described in the MATERIALS AND METHODS, the “exclu-

sion” method was used to isolate implicit learning
by instructing participants to abandon any cognitive
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strategy, reach directly to the displayed targets, and receive
no visual feedback on exclusion trials. This approach
allowed explicit learning to be quantified through simple
subtraction by deducting implicit learning from the meas-
ured hand angles on neighboring standard nonexclusion
trials.

The dissociation of explicit and implicit learning was suc-
cessful (Fig. 3B), demonstrating robust contributions of both
components to the overall learning curve. Asymptotic
explicit learning reached 11.51� ± 7.52� [t(29) ¼ 8.51, P < 1.7e-
9, d ¼ 1.53], whereas asymptotic implicit learning, measured
over the first three cycles (12 trials) of the washout phase
(early aftereffects), reached 19.83� ± 6.36� [t(29) ¼ 17.37, P <

2.2e-16, d¼ 3.12]. These twomeasures of explicit and implicit
learning served as the primarymotor learning metrics in our
correlation analyses. Asymptotic measures were used to

examine the overall tradeoff between the two processes at
the individual level.

Cross-Task Correlations

With respect to correlations across tasks, we had two pri-
mary hypotheses: first, that effector-independent MWM
would selectively correlate with explicit motor learning,
and second, that effector-specific MWM would selectively
correlate with implicit motor learning. To test the first
hypothesis, we computed participants’ average MWM per-
formance in the Switch condition (collapsing across all
four movements of the encoding sequence) using both
variability (IQR) and average absolute angular error met-
rics. We then correlated these metrics with total explicit
learning from the VMR task. We observed significant nega-
tive between-subject correlations between errors in effector-

Figure 2.Motor working memory (MWM) results. Movements on the x-axis are ordered by sequence position, where “1st” represents the first movement
encoded (and thus the oldest). The y-axis reflects participants’ errors in each condition, measured as either the average absolute angular error (A) or var-
iability (B), as the interquartile range (IQR) of angular errors. The difference between these conditions indicates the advantage of using the same hand
for recall, referred to as the effector-specific benefit. Error bars represent the standard error of the mean (SEM). �P< 0.05; ���P< 0.005.

Figure 3. Visuomotor rotation (VMR) results. A: the mean hand angle per trial for each experimental condition (green ¼ baseline; purple ¼ learning
phase; blue¼ catch trials and washout phase). Error shading reflects the standard error of the mean (SEM). B: total learning was calculated as the aver-
age of the last three learning trials per target (12 trials total). Implicit learning was measured using the first three washout trials per target. Explicit learning
was determined by subtracting the final round of catch trials from the total learning metric. Box plot height shows confidence intervals and dots show
individual subjects.
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independent MWM and total explicit motor learning (Fig. 4;
variability: rPearson ¼ �0.44, P ¼ 0.013; rSpearman ¼ �0.46, P ¼
0.01; mean absolute angular error: rPearson ¼ �0.41, P ¼
0.024). These results support our first prediction, that explicit
VMR learning would correlate with abstract, effector-inde-
pendentMWM.

We now turn to our second hypothesis, which concerns
the predicted relationship between effector-specific MWM
and implicit motor adaptation. To test this prediction, we
computed effector-specific MWM in two ways: first, bymeas-
uring participants’MWM “effector-specific benefit,” and sec-
ond, by examining a recency-based “pre-washout” effect in
the Same trials. We used both angular variability and abso-
lute error metrics for completeness and correlated thesemet-
rics with total implicit VMR learning (i.e., average early
aftereffects; see MATERIALS AND METHODS).

Overall, the results supported our hypothesis (Fig. 5),
though they were more mixed than our findings on effector-
independent MWM and explicit motor learning. For the
fourth-movement measure of effector-specific MWM, we
observed a correlation between the angular variability and
implicit motor learning (rPearson ¼ �0.46, P ¼ 0.01; though
not reliable for the Spearman metric, rSpearman ¼ �0.27, P ¼
0.138), and a correlation between the average absolute angu-
lar error metric and implicit motor learning (rPearson ¼ �0.53,
P ¼ 0.002; rSpearman ¼ �0.46, P ¼ 0.009). For the effector-
specific benefit measure of effector-specific MWM, we
observed a significant negative correlation between angular
variability and implicit learning (rPearson ¼ 0.38, P ¼ 0.037;
rSpearman¼ 0.40, P¼ 0.025), but did not see a reliable correla-
tion when using the average absolute angular error metric
(rPearson ¼ 0.24, P ¼ 0.202; rSpearman ¼ 0.18, P ¼ 0.323).
Although more variable than our explicit learning versus
effector-independent MWM correlation results, these results
do, in broad strokes, support our second prediction, that
effector-specific MWM would correlate with implicit motor
learning.

Control Analyses

It is possible that some of the observed correlations, par-
ticularly those related to explicit learning measures, could be
driven by differences in general task engagement or execu-
tive functioning. That is, the degree of cognitive effort a
participant puts into both tasks could lead to spurious corre-
lations stemming from generic factors rather than potential
shared underlying computations between the correlated
measures.

As an initial control, we conducted a cross-task correlation
analysis (Figs. 4 and 5), in which we substituted extent error
for angular error as the metric of MWM performance
(Supplemental Figs. S1 and S2). Extent error measures how
much a participant over- or undershot the memory target
during recall, regardless of angular deviation. We reasoned
that because extent and angular error are thought to repre-
sent distinct features of spatial cognition and kinematic pro-
gramming (43, 44) yet should be similarly influenced by
general cognitive resources such as effort and attention,
observing robust cross-task correlations as in Figs. 4 and 5
would support a generic effort interpretation of our findings,
while null results would not.

No significant correlations were found between extent
error in the MWM task (average error or error variability)
and our motor learning metrics (all P values > 0.18; see
Supplemental Figs. S1 and S2). Rather than reflecting a
generic MWM capacity or effort, this suggests that the
link between motor learning and MWM depends on the
specific content being remembered; namely, angular
information. These findings support our emphasis on
angular error in the principal analysis, as it is the only
dimension learned in the VMR task. Moreover, this aligns
with previous research demonstrating dissociations in
the motor system’s representation of angular versus
extent dimensions in reach planning (43). (Indeed, abso-
lute angular and extent errors were uncorrelated in our
data, P ¼ 0.26.)

Figure 4. Explicit motor learning and effector-independent motor working memory (MWM) cross-task correlations. Explicit learning from the visuomotor
rotation (VMR) task is represented on the y-axis. The x-axis displays error in the MWM task under Switch conditions (collapsed across all sequence posi-
tions), measured as either the average absolute angular error (A) or the variability of angular error (B).
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In a second set of control analyses, we examined response
times (RTs) from the MWM task in relation to the same VMR
task metrics (Supplemental Fig. S3). RTs could also index
general effort, particularly in the MWM task, which had lib-
eral RT constraints. For each MWM task condition, we com-
puted median RTs and RT differences in the same manner
as the MWM error metrics and correlated these values with
explicit and implicit motor learning metrics. Similar to the
extent error analyses, we found no significant correlations
(all P values> 0.08, and all P values> 0.44 with the removal
of a single outlier in the bottom panel, see Supplemental
Fig. S3).

Taken together, the absence of significant correlations
between VMRmetrics and extent errors or RTs on the MWM

task, both potential indices of general cognitive effort, sug-
gests feature-specific associations between motor learning
and effector-specific and effector-independent components
of MWM.

DISCUSSION
In this study, we explored potential relationships between

short-term memory for movements (motor working mem-
ory; MWM) (1) and motor learning. Specifically, we asked
whether the capacity to hold effector-independent and effec-
tor-specific information in MWM is selectively correlated
with explicit and implicit components of motor learning,
respectively.We observed individual differences that supported

Figure 5. Implicit motor learning and effector-specific motor working memory (MWM) cross-task correlations. Top: effector-specific MWMwas quantified
as the difference in error between the fourth movement, which demonstrated an effector-specific benefit, and the first three movements within the
Same condition. Error was measured using the average absolute angular error (A) and the variability of angular error (B). Since this calculation is based
on error, a negative correlation signifies a positive relationship between implicit learning and effector-specific MWM. Bottom: The x-axis represents the
difference in error between the Same and Switch hand conditions for the fourth movement in the MWM task, using both the average absolute angular
error (C) and the variability of angular error (D). This difference reflects the advantage of recalling movements with the same hand (the effector-specific
benefit; see Fig. 2A).
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these hypotheses: 1) individuals with more robust explicit
motor learning also exhibited greater memory fidelity in
effector-independent MWM, and 2) individuals with a high
level of implicit motor learning also exhibited greater mem-
ory fidelity in effector-specificMWM. These results, although
only correlative, add further support to the distinction
between effector-specific and effector-independent repre-
sentations in MWM (10), and may offer novel insights into
how MWM could contribute to long-term motor learning
processes.

Effector-Independent MWM and Explicit Motor Learning

Prior research relating working memory to motor learn-
ing has been largely focused on examining the relation-
ship between visual working memory and motor learning
(3, 31, 45). Here, we found that a greater contribution of
explicit processes during motor learning was correlated
with lower error in effector-independent MWM. Given
recent findings from our laboratory showing no interfer-
ence between visuospatial load and effector-independent
MWM, these results are distinct from previous work by
identifying potentially “motor-specific” working memory
processes as a distinct contributor to explicit motor learn-
ing (10).

Our results linking effector-independent MWM and
explicit motor learning are also consistent with interma-
nual transfer research. Transfer studies have used visuo-
motor and force field adaptation tasks, in which one arm
undergoes adaptation and the opposite arm is tested for
residual learning. Recent work has demonstrated that
explicit learning is largely effector-independent (transfer-
able across limbs) (34, 46), which is fully consistent with
our results. Furthermore, a study by van Mier and Petersen
(47) found that participants who learned a maze by tracing
showed significantly better transfer when tested with the
opposite hand on an identical maze than on a mirrored one.
This finding supports the MWM task design, where effector-
independent MWM is assessed by replicating a non-mirrored
movement on Switch trials.

Effector-Specific MWM and Implicit Motor Learning

We also found evidence supporting our secondary hypoth-
esis, that implicit motor learning may leverage effector-spe-
cific information held in working memory. We observed a
significant positive correlation between implicit learning
and effector-specific MWM, measured as both the memory
benefit afforded by using the same hand to recall move-
ments, and a recency-based “fourth-movement” metric
related to recalling the most recently encoded movement
with the same hand. However, when using both our absolute
error and variability MWMmetrics, one of these correlations,
between implicit adaptation and the absolute error in the
same-hand benefit metric, was not statistically reliable
(Fig. 5). Thus, the correlations observed between implicit
adaptation and effector-specific MWM should be taken with
a grain of salt.

Our finding that effector-specific MWM correlated with
implicit motor learning is broadly consistent with other find-
ings showing that, unlike explicit motor learning, implicit
motor adaptation is highly effector-specific, exhibiting

minimal (if any) transfer across limbs (34, 36, 48). Moreover,
recent work on motor adaptation has uncovered a subcom-
ponent of implicit motor learning that is susceptible to
short-term forgetting (“temporally volatile” adaptation),
biasing movements back to an unadapted state as time
passes between trials (49, 50). Speculatively, these effects
could relate to a possible reliance on some kind of implicit
motor working memory cache. Although our previous study
found a lack of strong temporal decay effects in our MWM
tasks (10), those tasks involved no learning and were thus
focused on an increase in memory error over time, not a
drift back to a nonadapted motor memory. Future work
could attempt to more directly relate our measures of
working memory fidelity with temporally volatile implicit
adaptation.

Previous work has highlighted a negative relationship
between working memory recruitment and implicit motor
processes (3), which may appear contrary to our results
here (Fig. 5). We propose that the positive relationship we
observed between implicit motor learning and effector-spe-
cific MWM challenges the conventional view that any use of
working memory impairs implicit motor learning. Instead,
it suggests that interference may stem not from using
working memory in general, but from the specific content
maintained within it. That is, working memory content
related to recent movement features may be useful for
implicit motor learning, while working memory content
related to irrelevant visual or spatial stimuli may cause
interference.

MWM: Eligibility Traces for Learning?

The correlations between effector-independent MWM
and explicit learning we observed here may reflect the
requirements of remembering an abstract motor plan
across short timescales (35). This type of working memory
process would be quite useful for retrieving and refining a
consistent cognitive strategy during learning, and for link-
ing those strategies to observed errors during performance
monitoring (9, 35, 51). In the context of implicit motor
learning, short-term memory of movements could help
link observed sensory errors to preceding movements,
especially under feedback delays (52, 53).

These proposed functions of MWM during learning are
akin to the maintenance of an “eligibility trace,” a key con-
cept in reinforcement learning (54). That is, working mem-
ory can help the learner link recent actions held in
memory (the “traces”) with specific observed outcomes of
their actions (55, 56). This key computation could be
implemented by maintaining a persistent representation
of recent action kinematics. Neural recordings in monkeys
performing saccades provide some compelling neural evi-
dence for this possible role of MWM. Studies have revealed
robust post-saccade working memory traces of eye move-
ment kinematics in the dorsolateral prefrontal cortex (24,
25), a key hub of the working memory system. It is plausi-
ble that these findings would generalize to other motor
behaviors, like reaching. Future work could try to reveal in
more detail the precise format and neural correlates of
persistent working memory representations of actions that
could be used to undergird motor learning.
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Limitations

Although the current study provides evidence support-
ing a role for MWM in motor learning, several limitations
should be acknowledged. First, the correlational design
precludes any definitive conclusions about causality. That
is, although we observed associations between MWM and
visuomotor adaptation, we did not directly demonstrate
the recruitment of working memory resources during
motor learning. Future studies could employ experimental
manipulations, such as introducing a MWM load during
learning or using brain stimulation, to more directly test
causal links between motor learning and effector-inde-
pendent or effector-specific MWM.

Second, our measures of explicit learning and effector-
specific MWM were derived indirectly, relying primarily on
subtraction-based calculations. Although such approaches
are widely used, theymay introduce errors (40) or confound-
ing influences from overlapping cognitive processes.

Finally, the relationships we observed between working
memory andmotor learning likely varies across different age
groups and skill levels. For instance, athletes and musicians
may attend to or retain different types of information in
MWM, which could influence motor learning in distinct
ways.

Conclusion

In sum, recent research suggests that motor learning is
more than just long-term, incremental improvements in
movement execution; various cognitive processes play key
roles in motor learning (4). We believe that holding motor
content in workingmemory is one such cognitive process (1).
Our findings here suggest that MWMmay play a role in mul-
tiple forms of motor learning.
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