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Much of human memory takes the form of cognitive graphs that allow us
torelate and generalize knowledge. The influence of structured memory
inthe motor systemis less clear. Here we examine how structured memory

representationsinfluence action selection when responses are retrieved from
newly learned, hierarchical visuomotor maps. Human participants (N=182)
learned visuomotor mappings with (or without) animposed latent structure
that linked visual stimulus features (for example, colour or shape) to intuitive
motor distinctions, such as hands and pairs of fingers. In participants who
learned structured visuomotor mappings, transitional response timesindicated
that retrieving the correct response from memory invoked the ‘traversal’ of
astructured mental graph. Forced-response experiments revealed similar
computations withinindividual trials. Moreover, graph-like representations
persisted even after multiple days of practice with the visuomotor mappings.
Our results point to direct links between internal computations over structured
memory representations and the preparation of movements.

Graph-like structures are ubiquitous in human cognition, from organ-
izing spatial knowledge to representing hierarchical plans and abstract
sequences'™. Graph-like mental representations have also been impli-
cated inthelearning and planning of action sequences®®, suggesting that
suchrepresentations may be fundamental to both memory and cogni-
tive control. What is less clear is the relationship between structured
memory and thereal-time dynamics of selecting a single movement. Are
structured memoriesstrictly in the domain of cognition? Or might traces
of internal memory structures also be echoed in the motor system?
Consider piano sight-reading, where clefs (for example, bass ver-
sustreble), note locations (for example, the third line on the staff) and
accidentals (for example, sharps and flats) are combined to determine
key presses (Fig. 1a). How does the sight-reading musician rapidly
navigate their memory of symbol-to-finger mappings to produce fast,
accurate finger movements? One possibility is that navigating this
internal mappingand generating anaction are strictly separable com-
putational stages. Thatis, musicians may implement an algorithm that
parses features of the stimulus and queries aninternal representation
of the relevant symbol-finger mapping. Then, only when the decision
about the desired response is complete, they shuttle the result (for
example, D flat/rightindex finger) to their motor system. Alternatively,
we hypothesize that people may automatically prepare relevant motor

commands whileinthe process of querying visuomotor memory. For
example, determining the clef might potentiate the fingers of one
entire hand, and then determining the exact note might initiate the
movement of one finger on that hand. This type of coupling between
decision-making and movement would be consistent with work in both
humans and animal models suggesting that sensory evidence accumu-
lationis echoed in the motor system” ', However, in our proposal, this
coupling is not dependent on the accumulation of perceptuomotor
evidence (forexample, dot motiontasks) but canbe revealed even when
anabstract memory representation mediates between perception and
action. If supported, thisideawould blur the lines between structured
memory retrieval and movement selection processes.

Here, we aimed to test these competing hypotheses using a variant
of anarbitrary visuomotor association learning task. Our primary goal
was to understand how these more complex types of decisions—ones
that require retrieving information from structured mental graphs—
may interact with the motor system on short timescales. To that end,
our task motivated participants to use stimulus features (colour, shape
and pattern) to determine correct responses, similar to musicians
considering notes on the page as they prepare to play a note. Criti-
cally, individual features could be associated with different ‘levels’ of
an intuitive motor hierarchy (Fig. 1b). The hierarchically structured
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Fig. 1| Task design and baseline correction. a, Example musical notation and
the associated action/key. b, Example visuomotor mapping with the correct key
press for each of the eight stimuli and illustration of one specific feature-to-level
assignment. Visuomotor mappings were counterbalanced across participants.
¢, Task schematic for the learning task. d, Task schematic for the RT baseline task.
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e, Visualization of RT baseline correction, with average RTs for each pairwise
transition between fingers for the learning and RT baseline tasks (Experiment 1)
depicted as heat maps. Baseline RTs are subtracted from learning task RTs to yield
corrected RTs.

mapping allowed us to make precise predictions about behaviour and
ask whether the structure of an internal visuomotor mapping guides
rapid movement preparation.

We established that a simple measure—participants’ trial-by-trial
response times—could reveal the latent structure of alearned visuomo-
tor mapping (Experiment 1). We then accounted for various potential
alternative explanations, such as intrinsic response time costs when
switching betweendifferent fingers, in control experiments (Experiments
2 and 3). Next, we used a variant of a forced-response-time paradigm to
characterize within-trial retrieval dynamics” " (Experiments 4 and 5) by
interrupting the retrieval of learned visuomotor associations at various
time points during deliberation and measuring the resulting errors. We
found evidence that people sequentially ‘prune’ the structured visuomo-
tor mapping from top to bottom during the preparation of single finger
movements. These data could be described by a simple computational
modelinwhichstimulus features were prioritized duringaction selection
on the basis of the mapping structure to dynamically potentiate differ-
ence clusters of potential motor actions. Finally, we show thatinteractions
betweenactionselectionand the structure of the learned mapping persist
even after extensive practice (eight days). We speculate that retrieving
actionsfromastructured visuomotor memory invokes anavigation-like
computation over a cognitive graph or neural state space**>* and pro-
pose that this process can dynamically shape motor planning.

Results

Reaction times reflect the structure of learned mappings

Our goal was to understand how structured visuomotor mental repre-
sentations, akin to note-key pairings in music sight-reading (Fig. 1a),
dynamically interact with the motor system during action selection.
To do this, participants (N =40) engaged in a visuomotor learning

task (Fig. 1b,c) and areaction time (RT) baseline task (Fig. 1d). Dur-
ing the task, the participants used trial-by-trial feedback to learn an
eight-to-eight deterministic visuomotor mapping (Fig.1b,c). Toembed
structure into the mapping, stimuli varied along three features (col-
our, shape and pattern), and we assigned each dimension to a level
of an intuitive motor hierarchy (hand > finger-couplet > finger)*. For
example, if shape was assigned to the highest level of the hierarchy—
hand—thenthe shape of the stimulus determined which hand contained
the correctresponse (Fig.1b). We confirmed that these mappings were
intuitive to participants in a naive group of participants with a survey
(Methods and Supplementary Fig. 1).

We used variationin RT between pairs of trials (‘transitional RTs’)
as an index of whether people were sensitive to the structure of the
mappings”>*. Transitional RT analyses involve classifying RTs on the
basis of features of the current and previous trials or responses, rather
than considering each trial independently. We isolated the impact of
the mapping structure ontransitional RTs and controlled for intrinsic
finger-to-finger switch costs by subtracting the mean RT for each of the
pairwise transitions between fingers measured during the RT baseline
task from the RTs in the learning task for the same finger-to-finger
transitions (Fig. 1e). The remaining variation in RT switch costs dur-
ingthelearningtask therefore should not be driven by intrinsic finger
transition biases butrather by the latent structure of the mapping. We
conducted all primary analyses on these corrected RTs.

We compared participant transitional RTs to the predictions of three
theoretical models designed to explain transitional RTs: (1) a Hierarchical
graph model (our hypothesis), (2) a Feature-Based model and (3) aFlat
model (Fig.2). We entered the corrected RTs (for consecutively correct
trials only; Methods) into three linear mixed-effects models that opera-
tionalized each theoretical model and assessed the model fit for each.
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Fig. 2| Theoretical models. Example trial and illustrations of three theoretical models of behaviour with predicted transitional RTs under each model (upper,
summarized by path distance or number of features switching across trials; lower, 8 x 8 transitional structure).

First, the Hierarchical model used distance within the visuomotor
mapping structure (that is, the number of graph edges between the
currentand previous stimuliinthe hierarchical structure;[0,2,4,6]) to
predict RTs. We use the term ‘path distance’ to refer to the number of
graphedgesbetween consecutive responses. Inthis model, longer path
distances should be associated with slower transitional RTs. Second,
the Feature-Based model predicted transitional RTs using the number
of stimulus features that switched on a given transition ([0,1,2,3]).
This model posits slower transitional RTs when more features of the
stimulus change across trials but does not impose any structure or
treat switching of specific features differently. Importantly, the design
of the stimuli and underlying structure in the mapping ensured that
the Hierarchical and Feature-Based models predict different patterns
of RT behaviour (Fig. 2, bottom). Third, if participants were simply
learning one-to-one associations between stimuliand actions but not
representing any latent structure (a flat representation), switching
from any response to any other response should incur comparable
RT switch costs. The predictor for the Flat model was thus whether
the stimulus repeated or switched across trials, with the assumption
that repeating the same response facilitates RT. In addition to these
theoretically grounded models, we included a Physical Distance model
and aNearest-Neighbour model (Methods) to operationalize alinearly
modulated attentional effect where attention could be biased towards
the previousresponse and thus responses far away from the previous
response would take longer to prepare.

Our primary analyses provided convergent evidence that par-
ticipantsrepresented the latent hierarchical structurein the mapping:

corrected transitional RTs scaled with the path distance through a
graph of the visuomotor mapping (Fig. 3a,c; two-tailed paired t-test,
Bonferroni-corrected a = 0.05/6 = 0.008; 6-distance versus 4-distance:
t,=3.24; P=0.002; Cohen’sd = 0.30; 95% confidence interval (CI), (17.8,
77.3); 6-distance versus 2-distance: t;, = 8.50; P< 0.001; Cohen’sd = 1.35;
95% Cl, (148.6,241.3); 6-distance versus O-distance: t;, = 13.6; P< 0.001;
Cohen’s d=2.73; 95% Cl, (315.2, 425.4); 4-distance versus 2-distance:
ty,=7.12; P<0.001; Cohen’s d =1.05; 95% Cl, (105.5, 189.3); 4-distance
versus O-distance: t;, =13.11; P < 0.001; Cohen’s d = 2.44;95% Cl, (272.9,
372.5); 2-distance versus O-distance: t;,=13.92; P< 0.001; Cohen’s
d=1.59; 95% Cl, (149.8,200.8)). In other words, RTs monotonically
increased with our hypothesized path distance metric (Fig. 3c). This
result was further supported by the mixed-effects models: the Hierar-
chical modelreliably produced the best fit to the behaviour, compared
with the four competing models (Bayesianinformation criterion (BIC):
Hierarchical, 330,109; Feature-Based, 330,171, Flat, 330,581, Physical
Distance, 330,790; Nearest-Neighbour, 330,563; Fig. 3d). Wereplicated
thisresultinaseparate group of participants (NV=27) who were trained
on a modified hierarchical structure (Supplementary Fig. 2). We also
found that participant errors reflected the mapping structure (Sup-
plementary Fig. 3). These findings suggest that participants learned
and mentally represented the structure of the visuomotor mapping.
Furthermore, the structure affected trial-by-trial RTs and errors.

Unstructured mappings yield different RT profiles
One potential concern about these results is that the RT baseline cor-
rection might not sufficiently control for intrinsic motor switch costs.
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Fig. 3 | Results for Experiments 1-3. a, Example mappingin Experiment 1
(N=40).b, Learning curve from Experiment 1. RTs and corrected RTs over the
course of the task are plotted in Supplementary Fig. 10. ¢, Corrected RTs

plotted by path distance (consecutively correct trials only) from Experiment 1.

d, Linear mixed-effects modelling results from Experiment 1 plotted as the
difference in BIC between the Hierarchical model (line at 0) and the alternatives
(Feature-Based, Flat, Physical Distance and Nearest-Neighbour). Positive values
indicate that the Hierarchical model was the best fit for participant behaviour.
Models below the O line outperformed the Hierarchical model. e-h, Experiment 2
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(N=33)—same as Experiment 1. Note that H includes only three points for the
Flat, Nearest-Neighbour and Physical Distance alternative models since stimuli
vary only along one feature. i-1, Experiment 3 (N =26)—same as Experiment 1.
m, Legend for mapping the hierarchical clustering dendrogram results onto
fingers. n-p, Hierarchical clustering results for Experiments 1-3. Hierarchical
clustering reproduced the latent structure of the visuomotor mappingin
Experiment 1. Unstructured mappings (thatis, Experiments 2 and 3) yielded
idiosyncratic dendrograms. q, Hierarchical clustering results for the RT baseline
task. Thedatainb, c,f,g,jand k are presented as mean values + 1s.e.m.

We implemented two additional control studies that addressed this
concern in different ways. In both, we removed the latent structure
from the task and trained participants on ‘unstructured’ mappings
(Fig. 3e,i). In Experiment 2, we used simpler stimuli than in Experi-
ment1to ensure that there was no possibility of extracting any latent
structure in the mapping. This experiment was designed to rule out
the possibility that the results of Experiment 1 would arise from any
eight-to-eight stimulus-action mapping regardless of structure. In
Experiment 3, we constructed ‘unstructured’ mappings using the same
three-feature stimuli from Experiment 1 (Supplementary Fig. 4). In
these experiments, we quantified path distance using the same logic
as the hierarchical mapping (from Experiment 1) and performed the
same RT analyses.

Inboth cases, the datawere not well fit by the Hierarchical model.
In Experiment 2, we found that the Flat model was a better fit for
participant behaviour (that is, lower BIC; Fig. 3h; BIC: Hierarchical,
325,873; Flat, 325,546; Physical Distance, 326,074; Nearest-Neighbour,

325,683). Transitional RTs were facilitated on repeat trials but were
effectively equivalentacrosstrials where the stimulus changed (Fig. 3g;
two-tailed paired t-test, Bonferroni-corrected a = 0.05/6 = 0.008;
0-distance versus 2-distance: t;, =11.98; P< 0.001; Cohen’s d =1.75;
95% Cl, (175.9,248.0); 0-distance versus 4-distance: ¢;, = 11.31; P < 0.001;
Cohen’s d=1.83; 95% Cl, (197.2, 283.7); O-distance versus 6-distance:
t;,=10.68; P<0.001; Cohen’sd=1.80;95%Cl, (192.4,283.2); 2-distance
versus 4-distance: t;, =2.39; P=0.023; Cohen’s d = 0.21; 95% Cl, (4.3,
52.7); 2-distance versus 6-distance: ¢, =2.23; P=0.033; Cohen’s
d=0.18;95% Cl, (2.3, 49.4); 4-distance versus 6-distance: t;, = —0.35;
P=0.725; Cohen’sd =0.02;95%Cl, (-17.8,12.5)). For Experiment 3, the
Nearest-Neighbour model was the best-fitting model (Fig. 31; BIC: Hier-
archical, 58,706; Flat, 58,716; Feature-Based, 58,768; Physical Distance,
58,811; Nearest-Neighbour, 58,642), and RTs did not linearly increase
with path distance (Fig. 3k; Bonferroni-corrected a = 0.05/6 = 0.008;
0-distance versus 2-distance: t,; =5.5; P< 0.001; Cohen’s d =1.48; 95%
Cl, (148.3, 325.9); O-distance versus 4-distance: t,; = 9.04; P < 0.001;

Nature Human Behaviour | Volume 9 | September 2025 | 1898-1912

1901


http://www.nature.com/nathumbehav

Article

https://doi.org/10.1038/s41562-025-02217-2

Cohen’s d=2.17;95% Cl, (241.0, 383.2); O-distance versus 6-distance:
t,5=10.58; P<0.001; Cohen’sd =2.56;95%Cl, (267.3,396.5); 2-distance
versus 4-distance: t,;=2.19; P=0.038; Cohen’s d = 0.45; 95% Cl, (4.6,
145.4); 2-distance versus 6-distance:t,; = 2.78; P= 0.010; Cohen’sd = 0.6;
95% Cl, (24.7,165.0); 4-distance versus 6-distance: t,; = 0.76; P = 0.457;
Cohen’s d=0.14; 95% Cl, (-34.1, 73.7)). Taken together, these results
refute the possibility that our previous results were an artefact of link-
ing our mappingto physical effectors and suggest that latent mapping
structure impacts the pattern of RTs.

Model-free clustering of RTs reproduces latent structure

We performed amodel-free clustering analysis to reconstruct the map-
pings fromtransitional RT data®?® (R packages cluster and factoextra).
We predicted that this analysis would reproduce the hierarchical struc-
ture of the mapping for Experiment1butyield idiosyncratic structures
when there was no consistent structure. We calculated average RTs for
each pairwise transition between responses to obtain a transitional
RT profile for each target stimulus. We then calculated the Euclidean
distances between the RT profiles and performed clustering on the
transitional RT profiles. Finally, we visualized the inferred structure
of the mapping with dendrograms (Fig. 3n-p).

The clustering algorithmfaithfully reproduced the latent structure
of the mapping from Experiment 1 (Fig. 3n). In contrast, experiments
without latent structureyieldedidiosyncratic dendrograms (Fig.30-q).
This data-driven analysis further demonstrates thatindividuals learned
and used the structure built into the task when it was available and
reiterates our finding that the format of memory representations
canbeinferred from a simple behavioural measure—transitional RTs.

Experiments 4 and 5: within-trial dynamics of action selection
The results from Experiments 1-3 show that the structure of a visuo-
motor mapping shapes trial-by-trial action selection. We posited that
thisresult could arise fromindividuals mentally traversing aninternal
representation of the visuomotor mapping—a cognitive graph—to
retrieve correct responses, similar to the traversal of structured mental
representations of non-motor content found in other domains® %, We
hypothesized that this latent traversal process would automatically
communicate with the motor system, potentiating relevant sets of
actions in real time as people query nodes in the cognitive graph. In
the context of our task, participants might sequentially potentiate
(or prune) responses by considering those that share the top-, then
mid- and finally low-level features of the stimulus to arrive at the cor-
rect response. This sequential dynamic is structured, as the latent
structure of the mapping directly shapes the action selection pro-
cess. In contrast, an unstructured dynamic would describe a process
wherethelatent structure of the mappingis notevidentinthe action
selection process.

We tested this hypothesis using a paradigm designed to elicit
responses at different points during action selection on each trial. We
trained two groups of participants on either the structured visuomo-
tor mapping used in Experiment 1 (Experiment 4) or an unstructured
visuomotor mapping, as in Experiment 2 (Experiment 5). We then
compared the probabilities of different types of errors as afunction of
how long participants had to prepare their responses on a given trial.

Learning task results: replication of Experiments 1and 2

Thelearning phase results replicated the results of Experiments1and
2, respectively (Supplementary Fig. 5). Thatis, the Hierarchical model
was the best fit for participants trained on the structured mapping
(BIC: Hierarchical, 117,458; Feature-Based, 117,656; Flat, 117,930; Physi-
cal Distance, 117,981; Nearest-Neighbour, 118,395), and the Flat model
was the best fit for participants trained on the unstructured mapping
(BIC: Hierarchical, 70,254; Flat, 70,134; Physical Distance, 70,350;
Nearest-Neighbour, 70,381). The model-free hierarchical clustering
algorithm againreliably reproduced the latent structure in the task

for participants trained on a structured mapping (Experiment 4) but
not an unstructured mapping (Experiment 5; Supplementary Fig. 5).

Action preparation dynamics accord with mapping structure
After learning, the participants performed a forced-response task
(Fig. 4a). During this task, the participants heard four beeps on every
trial and were instructed to synchronize their response with the fourth
beep, regardless of whether they felt prepared to respond'®”. We var-
ied the stimulus onset during each trial to manipulate the amount of
preparation time (PT; that is, the time between stimulus onset and
the fourth beep) that participants had (100 ms-1.2 s). On some trials,
participants had sufficient time to plan and execute their responses,
and onothertrialsthey were forced to guess. Our analyses focus on the
typesof errors participants made as afunction of PT. We examined the
within-trial dynamics of action selection, rather than considering the
influence of previous trials, as the forced-response paradigm neces-
sitates alarge number of error trials, which are difficult tointerpretin
transitional RT analyses (but see Supplementary Fig. 6 for analysis of
previous trial effects).

Our main question was whether participants sequentially visit
nodes on the cognitive graph of the visuomotor mapping and simul-
taneously prepare relevant sets of actions (structured action prep-
aration) or not (unstructured action preparation). Consider again
the example of the pianist: the structured preparation hypothesis
describes amodel of behaviour where they parse the musical notation
and, atthe same time, potentiate movements associated with different
levels (clef, note location, accidental and so on) of animplied cognitive
graph. The unstructured hypothesis, in contrast, describes adynamic
where they first determine the appropriate action (cognitive stage)
before potentiating that responsein the motor system (motor stage).

Crucially, these two hypotheses predict different patterns of
errors. For structured action preparation, we expected top-level errors
(that is, hand errors) to be less frequent than mid- or low-level errors
(couplet or finger-level errors), since resolving the top level of the
response should occur before resolving the lower two levels. Similarly,
mid-level (couplet) errors should be less frequent than low-level errors,
and low-level errors should be the most frequent, since it takes the most
amount of time to finally resolve the subordinate level. There should
thus be an orderly procession of error-type probabilities from top to
bottom.In contrast, if participants do not plan any finger movements
priortoaterminal decision, we would not expect any orderly progres-
sion of error types (unstructured action preparation). We note that
while the structure of the mappingis hierarchical, the structured pat-
tern of behaviour does not necessitate a strictly hierarchical dynamic
where superordinate features of the mapping must be fully resolved
before lower-level features are processed; a structured dynamic could
also arise from stimulus features being prioritized from top to bottom
butwith partially parallel processing of features. We focus here instead
onevidence for structured versus unstructured action selection, rather
than subtle differences between variants of a structured dynamic.

We classified responses as top-, mid- or low-level errors on the
basis of shared features between the target stimulus and the stimulus
associated with the response participants made (Fig. 4b). For example,
if the target response was key D, then responding with key F would be
considered alow-level error (thatis, the hand and couplet are correct,
but the wrong finger was chosen), key A or key S would be a mid-level
error (thatis, the correcthand was chosen, but not the correct couplet)
andresponding with any finger on the right hand would be a top-level
error. We then normalized that probability by the number of responses
that were classified as each type of error to account for the fact that
there were more ways to commit top-level errors (four responses) than
mid-level (two responses) or low-level (one response) errors.

We found clear evidence of structured action preparation for
participants trained on the structured mapping: the probability of
errors at differentlevels of the task stacked inan orderly fashion, such
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Fig. 4 |Forced-response design and results. a, Diagram of a forced-response
trial. The vertical arrows indicate the stimulus onset and response cue. PT,
preparation time. b, Error coding for an example trial. Errors were coded on the
basis of the highest level feature that mismatched between the target stimulus
and the stimulus associated with the response the participant made. ¢, Forced-
response results for Experiment 4 (N =36). The inset is the same, without the
line for correct trials for a clearer view of error probabilities. d, Forced-response
results for Experiment 5 (N =19). Theinset is the same, without the line for correct
trials. e, Left, probability of errors that share two visual features with the target
in Experiment 4 (N = 36). Two-tailed, Bonferroni-corrected ¢-test, top versus
mid, P=0.002; mid versus low, P < 0.001. Right, same plot for Experiment 5
(N=19) witherrorslabelled with the same structure as Experiment 4. Two-tailed,

Bonferroni-corrected ¢-test, top versus mid, P= 0.715; mid versus low, P < 0.001.
f, Probability of a within-couplet (purple; that is, low-level) error versus an across-
couplet (pink; thatis, mid-level) error when there are two possible adjacent finger
errors. The left panel shows results for Experiment 4 (N = 36; two-tailed ¢-test, mid
versus low, P=0.003), and the right panel shows results for Experiment 5 (N=19;
two-tailed ¢-test, mid versus low, P= 0.310). g, Model logic and predictions of
structured and unstructured action preparation models. h, Model simulation
with averaged fitted parameters for the best-fitting hierarchical three-o model
from Experiment 4. i, Model simulation with averaged fitted parameters for the
best-fitting flat model from Experiment 5. Note that lines for errors at different
mappinglevels are on top of each other. The datain c-fare presented as mean
values +1s.e.m.**P<.01;**P<0.001.

thattop-level errors were the least frequent and resolved quickly, while
low-level errors were the most frequent and resolved slowly (Fig. 4c;
seealso Supplementary Fig. 7a-c). We did not see this pattern for par-
ticipants trained on the unstructured mapping (Experiment 5; Fig. 4d
and Supplementary Fig. 7d-f). An analysis of variance (ANOVA) on the
normalized probability of errors at each level across all PTs (Experiment
(4 versus 5) x Error Level (top, mid, low)) revealed significant main
effects of Experiment (F, 5, =23.7, P< 0.001, 1”=0.31) and Error Level
(Fie58751 = 55-4, P<0.001, r? = 0.51). Crucially, we found a significant
interaction between Experimentand Error Level, reflecting the differ-
ent selection dynamics between the two experiments (Experiment x
Error Level: F ¢ 5,5, = 9.34, P< 0.001, 1* = 0.15).

Post hoc t-tests showed that the probability of errors stackedinan
orderly manner, such that low-level errors were the most common and
top-level errors were the least common for participants trained on the
structured mapping (Supplementary Fig. 8; low-level versus mid-level
errors: t;;=6.38; P<0.001; Cohen’s d = 0.98; 95% Cl, (0.02, 0.05);
mid-level versus top-level errors: t;;=7.95; P< 0.001; Cohen’sd = 1.1, 95%
Cl,(0.03,0.04)). In contrast, in Experiment 5, low- and mid-level errors
did not differintheir frequency (t,s =1.51; P= 0.149; Cohen’s d = 0.48; 95%
Cl,(-0.006,0.04)), but top-level errors were less frequent than mid- or
low-level errors (top versus mid: t;3=2.99; P=0.008; Cohen’s d = 0.58;
95%Cl, (0.02,0.004); top versuslow: t,s = 3.36; P= 0.003; Cohen’sd =1.0;
95%Cl, (0.05,0.01)). Taken together, participantsin Experiment 4 arrived
at the correct action by pruning the visuomotor mapping in real time,
while participantsin Experiment S displayed a different pattern of errors.

One alternative explanation for the effects observed in Experi-
ment 4 is that participants may be reacting to the visual similarity
between the target stimulus and the stimulus associated with the
low-level error response. The stimulus associated with the low-level
error response shares two of three features with the target stimulus
by definition; thus, it is possible that the increased probability of this
response was driven by visual similarity. Importantly, there are three
stimulithatsharetwo features with the target stimulusin the structured
visuomotor mapping: one of these three stimuliis the low-level error,
one a mid-level error and one a top-level error, even though they all
share two features with the target. We thus compared the probability
of makingeach ofthese types of errors (Fig. 4€, left). Participants were
still most likely to make the low-level versus mid- or top-level errors,
evenwhen the stimuli were matched for visual similarity with the target
(Bonferroni-corrected a = 0.05/2 = 0.025; low- versus mid-level error:
t;;=5.48; P<0.001; Cohen’s d=0.92; 95% ClI, (0.02, 0.05); low- versus
top-level error: t;5=7.24; P< 0.001; Cohen’s d =1.57; 95% ClI, (0.04,
0.07); mid- versus top-level error: t;s=2.4; P=0.02; Cohen’s d = 0.46;
95%Cl, (0.003, 0.03)). Furthermore, the pattern of errors was different
between Experiments 4 and 5 (mixed-factor ANOVA: Experiment x Error
Type: Fi 451 =14.8,P<0.001, * = 0.22). Specifically, while participants
in Experiment 4 were more likely to make mid-level errors than top-level
errors, this was not the case in Experiment 5 (¢,3=—-0.39; P=0.699;
Cohen’s d=-0.08; 95% CI, (-0.01, 0.008)). This strongly suggests
that our results were driven not by the visual similarity of the stimuli
butrather by thelatent structure of the learned visuomotor mapping.
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Another possibility is that spatial proximity to the target response
coulddrive theincreased likelihood of low-level errors (that s, action
slips with neighbouring fingers). To address this possibility, we com-
pared the probability of making a low-level error to the probability of
making amid-level error that was also adjacent to the target response
(on trials where there were responses on either side of the target
response). For participants trained on the unstructured mapping
(Experiment 5), the two types of adjacent errors were equally probable
(Fig. 4f, right; t,s=1.04; P=0.311; Cohen’s d = 0.48;95% CI, (-0.11, 0.31)),
supporting the presence of these spatially driven generic motor errors.
In contrast, participants trained on the structured mapping (Experi-
ment 4) were significantly more likely to commit low-level adjacent
errors (thatis, consistent with the structure of the task) than the alterna-
tive adjacent errors (Fig. 4f, left; ¢;3 = 3.20; P= 0.003; Cohen’s d=1.07;
95% Cl, (-0.2,-0.04)). These control analyses (Fig. 4e,f) provide con-
vincing evidence that the pattern of errors observed in Experiment 4
was a direct result of the structure of the learned mapping.

Computational modelling of distinct action selection
dynamics

We used computational models to further clarify the visuomotor pro-
cessing dynamics and compare the results across Experiments 4 and
5. The basic design of the model posits that preparing an action takes
some mean amount of time u with variance o and is normally distrib-
uted'® (Methods). These distributions can be transformed into curves
that describe the probability of making a specific response asafunction
of PT by taking their cumulative density. We compared four variants of
this model to characterize response dynamics in our structured and
unstructured tasks. Toadapt thismodel to our hierarchically structured
task, we allowed for three u parameters to vary freely, one for each
level of the mapping (Fig. 4g). We fit one version of this Hierarchical
model thatincluded asingle o parameter that was used at each level of
the mapping and another version thatincluded separate o parameters
for each level of the mapping. We also fit a Feature-Based model and
aFlat model for comparison (Methods). We predicted that one of the
Hierarchical models would best capture participant behaviour when
they learned a structured mapping (Experiment 4) and that the Flat
model would best capture behaviour for participants trained on an
unstructured mapping (Experiment 5).

As predicted, the Hierarchical models were the best fit for par-
ticipant behaviour for participants trained on the structured map-
ping (Hierarchical-three-o: summed BIC = 76,517; Hierarchical-one-o:
summed BIC = 76,536; Feature-Based: summed BIC = 77,767; Flat:
summed BIC = 78,054). Fitted u parameters were consistent with a
sequential pruning process—i,,, (0.615 s) was smaller than ;4 (1.01s),
and p.;s was smaller than p,,,, (1.26 s; Wilcoxon signed-rank test: top
versus mid: z=4.32; P< 0.001; effect size, r = 0.72; mid versus bot-
tom: z=4.07; P< 0.001; effect size, r = 0.72). In contrast, participants
trained on the unstructured mapping were better fit by the Flat model
(Hierarchical-three-o: summed BIC = 34,863; Hierarchical-one-o:
summed BIC =34,732; Flat: summed BIC = 30,917). Example model
simulations are pictured in Fig. 4h,i. These results provide further
evidence of structured action preparation during retrieval of visuo-
motor associations.

Structured dynamics persist after extensive practice
Oneopenquestioniswhether the traversal of the structured representa-
tionis atransient phenomenonthatappearsonly when people are first
forming the visuomotor memory, or whether it persists even with exten-
sive practice. To address this question, we had participants (N =20)
practise a hierarchically structured mapping (as in Experiment 1)
over eight consecutive days (Experiment 6; Methods and Fig. 5a,b).
We compared transitional RTs between Day 1 and Day 8 of the study,
asinthe previous experiments. Comparison of the RT profiles on Day
1versus Day 8 revealed that RTs again varied as a function of path dis-
tance (Fig. 5c; ANOVA: Day x Path Distance: main effect of Path Distance:
F,5,=64.0,P<0.001,7”=0.77), and also that participants were signifi-
cantly faster during the last session (main effect of Day: F, ;o = 37.54,
P<0.001, > = 0.67). Additionally, a significant interaction effect sug-
gested that the pattern of RTs was subtly different between the first
and last days of practice (F,,=19.73, P < 0.001, n*=0.51).

Toascertain whether the structured cognitive representation had
compressed to a flat representation, we compared the RT profiles on
Day 8 to those from the participants in Experiment 5 (where partici-
pants were trained on an unstructured mapping). Average RT and accu-
racy were comparable between the end of the last session of Experiment
6 and the end of free-response phase of Experiment 5 (RT: ¢;,, = 0.82;
P=0.416; Cohen’sd =0.26;95%Cl, (-61.5,145.7); accuracy: t;o, = 0.20;
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P=0.839; Cohen’sd = 0.07;95%Cl, (-0.04, 0.05)), so this analysis addi-
tionally addresses whether the results of Experiment 5 were driven
by overall better performance with the simple stimulirather than the
different structure of the mapping. Interestingly, we found that the pat-
tern of RTs on the last day of this study were significantly different from
the pattern of RTs in Experiment 5 (mixed-factor ANOVA: Experiment
x Path Distance: main effect of Path Distance: F, -, , = 70.48, P < 0.001,
n*=0.66; Experiment x Path Distance: F, 75 c = 4.53, P= 0.014, * = 0.11),
although there were no overall differencesin RT between these samples
(main effect of Experiment: F, 5, = 0.83, P=0.368, n*= 0.02). Further-
more, from the linear mixed-effects modelling, we found that acrossall
eight days, the Hierarchical model was the best fit for participant behav-
iour (see Supplementary Table1for BIC values). Together, these results
indicate that participants continued to leverage the latent structurein
the mapping toretrieve their responses even after extensive practice.

A subset of these participants (NV=9) also completed the
forced-response task on the first and last days of the experiment,
allowing us to address whether the structured dynamics we revealed
in Experiment 4 persist after extensive practice. First, we examined
changes in the probability of errors at different levels of the mapping
between the first and last days of the experiment (Fig. 5d). We con-
ducted an ANOVA with one factor for Day (1 versus 8) and another for
Error Level (top, mid, low) on the normalized probabilities of errors at
each level of the task (excluding correct responses). There was a sig-
nificanteffect of Day (F,s=9.75, P= 0.014, n*= 0.55), as participants had
overall higher accuracy during the session on the eighth day. In addi-
tion, there was asignificant effect of Error Level (F,,,=19.34,P< 0.001,
n*=0.71), though the interaction was not significant (Day x Error Level:
F,,,=1.88,P=0.185,1* = 0.19), indicating that the pattern of errors was
similar across the two sessions.

We followed this ANOVA with post hoc t-tests to compare the
frequency of errors across levels of the mapping. On Day 1, we found
that error probabilities stacked such that low-level errors were more
frequent than mid-level errors and mid-level errors were more frequent
than top-level errors (Bonferroni-corrected a = 0.05/2 = 0.025; mid
versus low: t; =3.55; P=0.008; Cohen’sd =1.1;95% Cl, (0.02,0.07); top
versus mid: £;=3.00; P=0.017; Cohen’sd = 0.95; 95% Cl, (0.007, 0.05)).
On Day 8, low-level errors were again more frequent than mid-level
errors (mid versus low: t;=2.85; P=0.021; Cohen’s d =1.1; 95% CI,
(0.008,0.07)); however, the comparison between top- and mid-level
errorsdid notsurvive correction (¢g=2.36; P=0.046; Cohen’sd = 0.51;
95% Cl, (0.0002, 0.02)). This pattern of results held when we incorpo-
rated PT as well (Supplementary Fig. 9).

Finally, we fit the PT models discussed previously (Fig. 4g;
Hierarchical-one-g, Hierarchical-three-o, Feature-Based and Flat)
to the data from Experiment 6. The Hierarchical models were the
best fit for participant data during the first and last sessions (Day
1: Hierarchical-one-o: summed BIC =17,680; Hierarchical-three-o:
summed BIC =17,674; Feature-Based: summed BIC =18,012; Flat:
summed BIC =18,105; Day 8: Hierarchical-one-o: summed BIC =14,260;
Hierarchical-three-o: summed BIC = 14,268; Feature-Based: summed
BIC =14,446; Flat: summed BIC = 14,255), although the additional o
parameters in this case did not produce a substantially better model
fit. Furthermore, reductions in the value of the fitted z parameters
reflect the idea that participants are getting faster with practice but
not necessarily compressing the representation (Fig. 5e)—the fitted
parameters suggest that retrieval is faster on Day 8 but still affected
by thelatent structure. Taken together, these results demonstrate that
the structure of the cognitive representation continued to be echoed
inresponse retrieval dynamics after extensive practice.

Discussion

Complex memory structures, such as cognitive maps and graphs,
are typically studied in the domain of higher-level cognition. But
what happens at the interface of structured memory and movement

preparation? In these studies, we examined interactions between
retrieving visuomotor memories and rapid action selection in the
context of graph-like memory representations. We hypothesized that
the structure of the memory representation would constrain action
selection dynamics and prompt a navigation-like computation over
this latent structure, as is evident in other domains®****°, Our results
support this hypothesis: when participants were trained on hierar-
chically structured visuomotor mappings, participant transitional
response times closely tracked the structure of the learned visuomotor
mapping (Experiment1). This finding provided behavioural evidence
thatindividuals learned and used that structure to retrieve responses
onatrial-by-trial basis. Furthermore, this result held after controlling
for intrinsic switch costs between fingers and was abolished when
structure was removed (Experiments 2 and 3).

We expanded on this finding in Experiments 4 and 5 to character-
ize how the learned mappings constrained action selection within the
scope of individual trials: participants’ errors systematically varied as
a function of movement PT in a manner consistent with a structured
model of action selection; thatis, we found evidence that participants
resolved hierarchical levels of the cognitive graph from top to bot-
tomand concurrently potentiated relevant sets of actions. This effect
was not seen when the learned mapping did not contain a structured
relationship between perceptual features and actions (Experiment 5),
helping to rule out explanations based on more basic processes of
action preparation™. Finally, in Experiment 6 we tested the persis-
tence of this structured retrieval process with increased practice and
found that structured action selection dynamics were evident even
after eight days of practice. Taken together, our findings point to a
dynamic, rapid interaction between a cognitive process—an inter-
nal navigation-like computation over a structured memory—and the
preparation of movements.

Our results thus suggest that graph-like representational formats
can be used in the context of action selection and interface directly
with motor preparation processes. It is possible that distances in a
low-dimensional neural ‘state space’ may correlate with the path dis-
tances we posit in our study, where navigation could reflect internal
control processes involved with traversing or reconfiguring these
state spaces®. This could occur via sequentially prioritizing different
visual features (and simultaneously activating different action sets)
at different times. Indeed, similar processes have been proffered to
explain classic task-switching effects®’. Moreover, thereis evidence that
neural activity and participant RTs can scale with path length through
aputative cognitive graph?®**. At the neural level, such structured rep-
resentations are typically believed to exist in traditionally ‘non-motor’
regions suchas the hippocampus and orbital frontal cortex>**~, rais-
ing the possibility that these regions might also be involved in storing
and accessing structured perceptuomotor mappings.

Our work is also related to a large literature examining informa-
tion flow between sensory evidence accumulation and the motor
system during perceptual decision-making. This work has suggested
that pre-movement activity in the motor system can reflect ongoing
evidence accumulation processes in perception'®**"**, A large body
of research using mouse- and eye-tracking methods during simple
decision-making tasks also suggests that movements act as continuous
read-outs of evolving decision processes, rather than being the output
of aterminal decision process®"'*1¢*-* While this perspective gener-
ally aligns with our results, we note that our behavioural approach limits
our ability to take a strong stance on the putative ‘continuity’ of these
cognitive-motor interactions. The fully continuous model proposed
in previous work represents one extreme version of cognitive-motor
interactions during decision-making. The other extreme in this caseis
adiscrete model where decision-making processes fully precede any
preparatory activity in the motor system. Indeed, there is evidence
that the truth lies somewhere in the middle of these two models—the
degree of continuity in information flow depends at least to some

Nature Human Behaviour | Volume 9 | September 2025 | 1898-1912

1905


http://www.nature.com/nathumbehav

Article

https://doi.org/10.1038/s41562-025-02217-2

degree onavariety of task features and the granularity of the decision®’.
Our results could be interpreted as evidence for a softer version of a
discrete model, as long as such a model allows for multiple response
selection stages within the scope of individual decisions (that is, at
each level of the mapping).

Interms of within-decision dynamics (Experiments 4 and5), some
results in the cognitive control domain contrast with the structured
processing dynamic that we identified here. Specifically, research with
behavioural and neural recording methods has not found evidence
of sequential pruning of potential responses during hierarchically
structured cognitive control tasks®*. Instead, people may process
hierarchical levels of a structured mapping simultaneously in these
cases. Parallelization in these tasks is thought to be possible due to a
hypothesized hierarchical gradient of representational abstractionin
the prefrontal cortex™**, where different areas of the prefrontal cortex
canprocess different task rules/levelsin parallel. A useful future direc-
tion couldbetolink previous work on task rules and cognitive control
to our current study, where the structured representation was not
defined by any strict hierarchical or contextual cues but rather was
directly linked to motor effectors.

Our focus onnewly learned visuomotor mappings naturally raises
questions about how action selection dynamics might evolve with
experience and, ultimately, expertise. If participants practised the
mapping forlonger (thatis, becoming ‘experts’ at the mapping), would
they show ‘flattening’, transforming the structured representation
into a direct 8-8 stimulus-response mapping? Experiment 6 argued
against this. Instead, action preparation was still closely linked to the
latent structure of the mapping even after thousands of trials. Revisit-
ing our pianistlearning to parse musical notation while planning finger
movements, early inlearning the pianistis probably explicitly parsing
individual symbols in order (clef > note > accidentals), dynamically
and automatically potentiating different actions as they determine
the correctkey to press. What happens after years of training? Instead
of overtrained stimulus-response associations becoming crystallized
into flattened ‘instances™>*, it may be that experts who are overtrained
onourtask, or even tasks like music sight-reading, still use asequential
parsing algorithm even after extensive practice but simply speed the
algorithm up.

Our study has several limitations. First, our modelling is somewhat
constrained; additional computations, such as an evidence accumula-
tion threshold for proceeding through levels of the visuomotor map-
ping, could beadded. Relatedly, our model does not delineate between
thestrictest possible version of a hierarchical processing model, where
moving to the nextlevel in the mental mapping can happen only after
resolving the previous level, and looser variants of hierarchical dynam-
ics, where different levels may be processed simultaneously but per-
haps with some being prioritized over others. In any case, it is likely
that there are both parallel and sequential processing dynamics at
play during our task—an idea that has been debated for decades®>’.
Finally, we focused here on navigation ‘down’ from a superordinate
control node to the appropriate response in Experiments 4 and 5 and
did not test whether there is evidence for ‘climbing back up’ the puta-
tivetree. Our designis not optimized for these analyses, although our
supplemental analyses provide some initial evidence for this effect
(Supplementary Fig. 6).

Taken together, our results suggest that cognitive memory
structures can directly shape the dynamics of action selection.
This work goes beyond previous findings in lower-level perceptual
decision-making'®*~** by linking the potentiation of actions to
higher-level structured memory representations. Our study thus
makes new connections between research on cognitive maps and
graphs in organizing behaviour and knowledge****' and the study of
sensorimotor learning and control, perhaps offering a new avenue
for understanding the format of mental representations in complex,
naturalistic visuomotor skills. Overall, our work raises questions about

nominal distinctions between high-level cognitive processing and
motor processing and provides evidence in support of a highly interac-
tive, dynamic blending of cognition and action.

Methods

All protocols were approved by Yale University’s Institutional Review
Board, protocol number2000027351.

Participants

Werecruited participants for Experiments 1-5 from the Yale University
undergraduate community (Experiment1, N = 44; modified structure
control, N=29; Experiment 2, N=34; Experiment 3, N =28; Experi-
ment 4, N=40; Experiment 5, N=20), and all experiments were con-
ductedinline withaprotocol approved by the university’s Institutional
Review Board. All participants provided informed consent prior to the
initiation of any study protocols. The participants received course
credit for their participation. All participants reported that they were
not colour-blind and had normal or corrected-to-normal vision. We
planned a priori to exclude participants that did not show reliable
evidence of learning by excluding participants that did not show over
25% accuracy for at least four of the eight visuomotor associations
(total exclusions: Experiment 1, N = 3; modified structure control,
N=1; Experiment 2, N=0; Experiment 3, N=1; Experiment 4, N=4;
Experiment 5, N=1). There were also asmall number of exclusions due
to technical issues (Experiment 1, N=1; Experiment 2, N=1; Experi-
ment 3, N=1). Additionally, we planned to exclude participants who
were not attentive to the task by excluding participants who did not
respond on at least 75% of the trials in the learning task for Experi-
ments1-3 andinthelearning or forced-response task in Experiments
4-and 5. No participants met this exclusion criterion. After exclusions,
we had 40 participants in Experiment 1 (N female, 17; mean age, 20.1
years), 28 participants in the modified structure control (Nfemale, 20;
meanage, 19.1years), 33 participantsin Experiment 2 (Nfemale, 18; mean
age, 19.7 years), 26 participants in Experiment 3 (N female, 16; mean
age, 19.3 years), 36 participants in Experiment 4 (N female, 19;
mean age, 19.6 years) and 19 participants in Experiment 5 (N female,
15; mean age, 20.2 years).

Experiment1

Task design. Experimental sessions for Experiment 1 were approxi-
mately one hour long and consisted of an RT baseline task, atask train-
ing phase and the learning task. The task was coded injsPsych (version
6.1.0)%%. Alldatareported in this manuscript were collected onaLenovo
IdeaPad 5 (Ubuntu 22.04).

RT baseline task. The participants first completed an RT baseline
task to measure intrinsic finger-to-finger switch costs without the
influence of the learning task. They performed the baseline task again
following the learning task. Both instances of this task were identical
and lasted approximately 5 min. During this task, the participants
used their left hand (on keys A, S, D and F) and right hand (on keys H,
J, Kand L) to respond to the position of a target green square on the
screen. On each trial, they would see eight squares on the screen that
were spatially aligned with their fingers on the keyboard. Seven of the
squares were white, while one square was green. Their goal was to press
the key aligned with the green square. Once they had made the correct
response, all squares turned white for 100 ms before another square
turned greentoinitiate the next trial. The next trial did not begin until
the participant made the correct response. We used this constraint to
avoid having participants rapidly responding with incorrect responses
to expedite the task. Only trials where participants made the correct
response ontheir first attempt were included in analysis. Additionally,
we excluded thefirstfive trialsin the task from analysis toaccount for
slowed RTs at the beginning of the block. Trial sequences included all
pairwise transitions between fingers (including repeating the same
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finger) aminimum of four times to ensure a stable switch cost estimate
for each pairwise transition between fingers.

Learning task. After the motor task, the participants were familiar-
ized with the structure of the learning task with 15 trials of a simplified
version of the task. During this practice phase, the participants were
instructed to use trial-by-trial feedback to learnthe correct key to press
(H,JorK)inresponse to three highly distinguishable emoji stimuli. The
participants would see anemoji on every trialand thenguess aresponse
beforereceiving binary feedback as to whether their response was cor-
rect or not. Trial duration was unrestricted in this phase.

After familiarization with the basics of the learning task, the par-
ticipants returned their hands to the keys that they had used during
the RT baseline task (left hand: A, S, D, F; right hand: H, J, K, L). Before
the learning task began, the participants saw an instruction screen
with eight stimuli that would be used during the task arranged in a
random order on the screen. Once the task began, the participants
saw one stimulus per trial and used trial-by-trial feedback to learn the
correct button to press in response to each stimulus. Correct stimu-
lus-response associations were deterministic. The sequence of stimuli
wasrandom, suchthateverytrial wasindependent. On every trial, the
participants would see a single stimulus, make a response and then
get feedback as to whether their response was correct or not (feed-
back duration, 750 ms; Fig. 1c). The next trial would proceed after
the feedback from the previous trial disappeared. If the participant
did not make a response within 2.5 s of viewing the stimulus, the trial
would time out, and the participant would receive feedback that they
needed to respond more quickly. The participants saw each of the
eight stimuliatleast 125 times (thatis, 125 iterations of each stimulus)
during the learning task.

Stimulus and visuomotor mapping design. Each stimulus varied
along three features: colour (red, orange, blue or purple), shape
(square, circle, triangle or diamond) and pattern (vertical stripes,
diagonal stripes, dots or checkerboard). We randomly selected two
possible values for each feature (for example, red and blue, square
and circle, vertical stripes and dots) for each participant. Thus, all of
the combinations of specific features yielded eight unique stimuli
per participant.

To embed structure into the task, we assigned each feature to a
level of an intuitive motor hierarchy, such that one feature indicated
what hand to respond with (top-level), another feature dictated a pair
of fingers within each hand or ‘couplet’ (mid-level) and the remain-
ing feature could be used to determine the correct response within a
couplet (low-level; Fig. 1b). For example, if colour was associated with
the top level, then all stimuli of one colour would be associated with
responsesintheright hand andall stimuli of the other colour would be
associated withresponsesin the left hand. Mid- and low-level features
were assigned from left to right in extrinsic space (Fig.1b). There were
six possible assignments of features to level (colour >shape > pattern;
colour > pattern > shape; shape > colour > pattern; shape > pattern >
colour; pattern > shape > colour; pattern > colour > shape), and we
counterbalanced the assignment of features to level across partici-
pants. The participants were never instructed about the structure.

Modified structure control experiment

Task design. For the modified structure control experiment, we
changed the task in Experiment1to measure whether other hierarchi-
cal structures were learnable to participants or whether the results of
Experiment1were drivenby the specificlatent structure that we trained
the participants on. The task design was identical to that of Experi-
ment1except for three key details. First, the participants executed the
baseline task only once at the beginning of the experiment, rather than
before and after the learning task, to reduce the length of the experi-
ment. Second, the task duration was shorter (approximately 30 min),

and the participants saw only 55 presentations of each of the eight
stimuli (a point at which participants had generally reached asymp-
totic performance in Experiment 1). Finally and most importantly,
we modified the hierarchical structure of the visuomotor mapping:
instead of feature values being assigned spatially in extrinsic space
from left to right, we aligned the structure with the mirror symmetry
of the motor system (Supplementary Fig. 2a). For example, while the
stimuli associated with the left pinkie and right index finger shared
mid- and low-level features in Experiment 1, the left and right index
fingers shared the mid- and low-level featuresin this experiment. Asin
Experiment 1, we counterbalanced the assignment of features to task
levels. The task was coded in jsPsych® (version 6.1.0).

Experiment 2

Task design. Task design for Experiment 2 was identical to that of
Experiment 1, except for the stimuli and structure of the visuomotor
mapping. The participants were assigned one of two possible stimu-
lus sets in this experiment. In this case, stimuli varied only along one
feature (rather thanthree), either colour or shape. Some participants
saw eightsquares of different colours during the task (Fig. 3e; orange,
green, yellow, red, blue, pink, brown and purple), and others saw eight
different shapes that were all black (square, circle, plus, diamond,
pentagon, triangle, crescent moon and star). This change meant that
there was nolearnable visuomotor structure embedded into the task.
All other details were the same as in Experiment 1 (RT baseline task
before and after learning, 125 iterations of each stimulus during the
learning task). The task was coded in jsPsych® (version 6.1.0).

Experiment 3

Task design. The overall task design for Experiment 3 was the same as
inthe previous three experiments. In this experiment, the participants
saw 55iterations of each stimulus and performed the RT baseline task
onlyonceinthe beginning of the session. We shortened the duration of
the experiment to 55 iterations as participants in longer experiments
had generally reached asymptotic performance at this point. We again
used the three-feature stimuli described for Experiment 1; however,
in this experiment, we created pseudorandomized mappings that
minimized the amount of learnable intuitive motor structure in the
mapping (Fig. 3i). Our aim was to assess whether the behaviour patterns
from participants trained on the structured mappings arose from the
use of the three-feature stimuli, rather than from the latent structure
that we had embedded into the task. We opted for pseudorandomized
mappings rather than fully randomizing the stimulus-response asso-
ciations because randomizing the limited number of features and
stimuli often created somewhat structured mappings (for example
shuffled mappings, see Supplementary Fig. 4). The task was coded in
jsPsych® (version 6.1.0).

Experiment 4

Task design. In Experiment 4, the participants started with the RT
baseline task before moving into the learning task. The participants
saw approximately 55iterations of each stimulusin this task. We chose
thisnumber of iterations because the previous studies suggested that
55 iterations was sufficient exposure for learning, and this duration
allowed us sufficient time for the forced-response task (see below)
before participants were too fatigued. Visuomotor mappings fol-
lowed the same structure as explained in Experiment 1 (Supplementary
Fig. 5a). After the participants had learned the mapping during the
learning task, they performed aforced-response task with the learned
associations. Experiments 4 and 5 were coded in Octave® (version
6.4.0) using PsychToolbox®* (version 3.0.18).

Forced-response task. During the forced-response task, the partici-
pants heard four ascending beeps (400 msapart) on each trial (Fig. 4a).
The participants were instructed to time their response with the fourth
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beep, regardless of whether they felt prepared to respond. We varied
the time point at which the stimulus appeared on the screen during the
beepsto manipulate the amount of preparation time (PT) participants
had to make their responses on a trial-by-trial basis. PT is defined as
the interval between when the stimulus appeared and the last beep
of the trial. PTs were randomly selected from a uniform distribution
from 100 ms to 1.2 s. Thus, on some trials, participants would have
sufficient time to prepare, while on others they would have to prepare
very rapidly (or guess). The participants were encouraged to respond at
the appropriate time on each trial evenifthey felt that they were guess-
ing. After the participants made a response, they received feedback
(750 ms) on whether their response was correct or not and whether
they hadresponded intime with the fourth beep. The participants had
a+50-ms cushion from the exact instructed timing within which they
would receive positive timing feedback.

The participants were familiarized with the forced-response task
using the same emoji stimuli that were used to familiarize them with
thelearningtask. This forced-response familiarization period occurred
after thelearningtask practice and before the main learning task. After
the learning task was completed, the participants executed approxi-
mately 760 forced-response trials (95 iterations per stimulus), and the
task took approximately 25 min. The participants had the optionto take
self-timed breaks following each 100-trial block.

Experiment 5

Task design. Experiment 5 followed the same protocol as Experiment
4 (including the shortened learning task duration toaccommodate the
forced-response task), with one change. The difference from Experi-
ment 4 was that participants were trained (Supplementary Fig. 5f) on
unstructured mappings using the stimuli from Experiment 2 (eight
squares of different colours or eight black shapes, counterbalanced).
Again, the participants first executed the RT baseline task, followed
by familiarization with the learning and forced-response paradigms.
After familiarization, the participants learned the visuomotor mapping
during the learning task. The session ended with the forced-response
paradigm described above.

Experiment 6

Participants. We recruited a separate group of participants to par-
ticipate in the longitudinal version of the task. All participants offered
informed consent prior to starting the study. In total, we recruited 27
participantsto take partin this study. Seven participants were unable to
complete the eight sessions due toillness, withdrawal from the study or
non-responsiveness, and we excluded them fromanalysis. Of the remain-
ing 20 participants (V=17 female; mean age, 19.8 years; range, 18-22
years), two participants missed one session. We opted to still include
these participants in our analyses, given the difficulty of collecting the
longitudinal data. Additionally, two participants had to reschedule
their last sessions for two days after the intended eighth session due to
illness. We also opted toinclude these participants in our analyses. The
participants were compensated US$15 h™ for their time (US$10 forin-lab
sessions and US$15 for six online sessions) and received a US$10 bonus
for completing the whole study at the end of the eight days.

Task design. The task closely resembled the design of Experiments 1
and 4. The goal of this study was to have the participants practise the
associations over eight days to assess whether the structured dynamics
that we observed in Experiment 4 would be attenuated by extensive
practice.Inotherwords, do participants use the latent structure of the
mappingearlyinlearningand then compressto more direct stimulus-
response associations once they have additional practice?

To answer this question, we had the participants practise a hier-
archically structured mapping (as in Experiments 1 and 4) for eight
consecutive days. On the first and last days of the experiment, the par-
ticipants came in-person to the lab to participate in a 30-min session.

This session consisted of the same training procedure as the previous
experiments, a motor baseline phase and the learning task (55 itera-
tions of each stimulus as in Experiments 3, 4 and 5). During Days 2-7,
the participants were emailed alink each morning for 10 min of online
practice with the mapping. The practice phase was identical to the
learning task other thanbeing shorter. If participants did not complete
thetask, they werereminded in the afternoon and againin the evening
to complete their practice session.

We also ran a subset of the included participants (N=9) on the
forced-response task during the first and last sessions of their partici-
pation. For these participants, the first and last sessions were identical
to Experiment 4.

Survey data collection

In addition to our six experiments, we collected survey data from
37 participants (N female, 29; mean age, 18.8 years) to measure the
participants’ intuitions about the learnability of structured versus
unstructured mappings in our task. We note that we did not directly
measure the intuitiveness of the structured mappings but rather used
learnability as a proxy for intuitiveness. The participants were recruited
from the Yale undergraduate community to participate in a different
study that used the same three-feature stimuli as the tasks presented
here. The task that they completed had the same general structure as
Experiment 3—participants used trial-by-trial feedback to learn the
correct response to eight three-feature stimuli with no underlying
structure to the mappings. There were some differencesin this proto-
col,suchasasurprise memory test at the end of the session and a subset
of stimuli that were presented less frequently than the other stimuli.
The survey was presented at the end of the experimental session and
took about 5 min to complete. Thus, the participants were familiar
with the general task when they responded to the survey but had not
been exposed to a structured mapping. In this way, we measured par-
ticipants’ intuitions about how latent structure affects the learnability
of these stimulus-key mappings.

The survey presented the participants with two ways to indicate
whether they thought structured mappings were easier to learn. First,
the participants were asked to create an eight-to-eight stimulus-key
mapping that they thought would be “easiest to learn for a new par-
ticipant”. On this question, the participants saw eight three-feature
stimuli in arandom order and selected one of the eight possible key
responses for each stimulus. They were also asked to write a few sen-
tences explaining why they chose the assignment that they had created.
Second, we asked the participants to rank eight mappings in order
from easiest to hardest to learn. For this question, we displayed eight
stimuli above pictures of the keys that participants used during the
task (lefthand:A, S, D, F; right hand: H,J, K, L). Weincluded each of the
six possible counterbalanced assignments of feature to hierarchy level
(forexample, shape > hand, colour > finger-couplet, pattern - finger)
and two unstructured mappingsin the options. The mappings were all
arranged in external space (asin Experiments1and 4). We also asked the
participants to explain why they thought that the mappings that they
putatfirstand last would be the easiest and hardest to learn. We focus
on this second question in this paper because it speaks more directly
to theintuitiveness of the embedded structures.

Analysis
Thedataand analysis code are available at https://github.com/jetrach/
StructuredActionPrepVMDM.

Motor correction. We operationalized structure in the learned visuomo-
tor mappings by linking visual features to intuitive groupings of actions.
Because our main interest was how the previous trial’s action affected
the current trial, we had one major confound to contend with: intrinsic
switch costs between the different fingers of each hand. We thus wanted
toensurethatany RT effects that we observed asaresult of learning the
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visuomotor mapping were due to the structure of the mapping, rather
than generic spatial or biomechanical influences on transitional RTs
between fingers. Todo this, we calculated the meanRT for each of the 64
pairwise transitions between fingers during the RT baseline task. We then
subtracted these RTs from the RTs of trials of the same finger-to-finger
transitions during the learning task (Fig. 1e). We thus removed variance
inthe RTs that was present during the baseline task to isolate the impact
ofthelearningtask structure on RT. We performed our further analyses
onthese baseline-corrected RTs. We excluded the first five trials of the
task and RTs that were especially slow, indicating that the participant
was not attending to the task (3 s.d. above the mean RT).

Learning task. Our primary analysesin Experiments 1-3 were based on
astraightforward logic: that after learning, RTs for correct responses
would be influenced by the previous trial in amanner dictated by the
learned visuomotor mapping, even though the sequence of stimuli
acrosstrialswasrandomized (thatis, every trial was independent). That
is, we reasoned that transitional RTs would spontaneously reflect the
structure of the visuomotor mappings that people learned®. Analyses
were conducted inR* (version4.2.1,2022) or MATLAB®® (version 9.13.0,
2022a, update 4).

We used repeated-measures ANOVAs and linear mixed-effects
models to analyse our data. Additionally, we used two-tailed one- or
two-sample ¢-tests or paired ¢-tests where appropriate and corrected
for multiple comparisons using a Bonferroni correction. We used
Welch t-tests when assumptions of normality were violated. We used
Cohen’s d to quantify effect sizes for t-tests®’ (effsize package inR,
version 0.8.1) and 1” for ANOVAs. We report 95% Cls on the mean dif-
ference for t-tests and on partial eta squared (%) for ANOVAs. For
experiments with structured mappings (Experiments 1and 4 and the
modified structure experiment), we combined across all feature-level
mappings aswe had noapriori hypotheses for how these assignments
might affect the RT results. We statistically justified this choice by
conducting ANOVAs within experiments to compare overall RT and
accuracy across feature-level assignments (Experiment 1: accuracy:
Fs3,=0.67,P=0.647;RT: F;;3,=1.3, P=0.287; Experiment 4: accuracy:
Fy3,=0.47,P=0.799; RT: F;3,=1.84, P= 0.135). Transitional RT analyses
were performed on trials where participants responded correctly tothe
currentand precedingtrials (consecutively correct trials). We did this
toensure we were examining response dynamics after the participants
had sufficiently learned the mapping, and to avoid confounds from
post-error slowing that can occur in reinforcement learning settings®®.
We note, however, that the main results do not qualitatively change if
weincludeall correct trials without conditioning on the previous trial
being correct. We removed outlier RTs by excluding RTsunder 200 ms
where participants would not have had sufficient time to respond.
In addition, we excluded the first three trials for each participant to
account for task initiation costs.

We designed three linear mixed-effects models to operational-
ize our three main theoretical models of behaviour. The Hierarchical
model used the number of graph edges or path distance between
responses (0, 2,4 or 6) onagiven pair of successive trials to predict cor-
rected RTs. If the top-level feature (for example, shape) changed across
trials, there were six graph edges between consecutive responses. On
trials where the top-level feature repeated but the mid-level feature
switched, there were four graph edges between consecutive responses.
When the low-level feature switched, there were two edges between
responses, and ontrials where the exact stimulus repeated there were
zero edges between responses. We used the structure we embedded
into the mappingto calculate these distances in Experiment1and the
modified structure control experiment. In Experiments 2 and 3, where
there was no latent structure in the mapping, we used the extrinsic
space hierarchical structure to calculate these path distances. This
approach allowed us to rule out alternative accounts of hierarchical
effectsin Experiment1.

For the Feature-Based model, we used the number of visual features
that changed between the previous and current trials (0, 1, 2 or 3) to
predict baseline-corrected RTs. Importantly, the stimulus and mapping
design ensure that the Hierarchical and Feature-Based models do not
predictthesame RT behaviour. Forinstance, trials that are classified as
six-edge paths in the Hierarchical model could have one, two or three
features that change across that stimulus transition. Similarly, four-edge
trials can have either one or two stimulus features changing across the
transition. The two models thus make dissociable predictions about
participant behaviour. For the Flat model, we modelled whether the
stimulus repeated or switched (0 or 1) to predict baseline-corrected
RTs. In addition to these three theoretically motivated models, we fit
two models that considered the physical distance between responses
in difference ways. We fit a Physical Distance model that counted the
number of fingers between responses to predict corrected RT (0-7).
This model operationalizes a spatially modulated attentional effect
where participants are faster to make responses that are adjacent to their
previousresponse. We also fit aNearest-Neighbour model that predicts
facilitated performance on transitions to neighbouring responses, but
does not assume a linear effect that extends across both hands (as the
Physical Distance model does; O for repeats, 1for adjacent responses and
2forall otherresponses). We included randomintercepts and slopes for
each participant and compared model fits using the BIC.

Forced-response task (Experiments 4 and 5). Our analyses for the
forced-response task examined the probability of different types of
errors that participants made as a function of PT. To do this, we first
calculated the actual PT that participants had on each trial by adding
their RT tothe planned PT that was hard-coded into the trial (that s, the
interval between the visual stimulus appearance and the fourth tone
inthe countdown). For example, if the stimulus was displayed 700 ms
beforetheresponse cue onagiventrial, and the participant made their
response 50 ms after the response cue, the actual PT onthat trial would
be 750 ms. Similarly, if the participant responded 50 ms before the cue,
then the actual PT on that trial would be 650 ms. We did this to quantify
PT more accurately on atrial-by-trial basis.

In Experiment 4, we classified errors on the basis of the highest
feature level where there was amismatch between the target stimulus
and the stimulus associated with the response that the participant
made (Fig. 4b). Thus, there was one correct response, one low-level
error, two mid-level errors and four top-level errors possible on each
trial. We normalized chance probabilities across error levels by dividing
the raw probability of errors at each level by the number of responses
associated with thatlevel. In addition to this approach, we conducted
primary analyses with errors coded for shared features between the
target stimulus and the stimulus mapped to the response that the
participant made at each level of the task (that is, without combining
probabilities within error levels). Visualizations of this approach are
depictedinSupplementary Fig. 7. We excluded trials where participants
did not respond within 100 ms of the response cue. Because Experi-
ment 5 operates as a control experiment to rule out generic motor/
spatial explanations of our forced-response-time results, we applied
theerror coding scheme that we used in Experiment 4 to the responses
in Experiment 5, as if those stimuli were structured in the same way.
To visualize the PT results, we calculated the average probability of
making each type of errorina100-ms sliding window that was moved
across the full range of PTs.

Response preparation models. We modified a previous model of
response selection'® to formalize three theoretical models of action
selection in our forced-response task. The basic model assumes that
the time (7) it takes to prepare an action a is described by a normal
distribution with amean g and standard deviation o:

Ta = N(Va’oa) (6]
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By taking the cumulative density of this distribution, we get a
sigmoidal function p, that describes the probability of having pre-
pared action a at any given PT. The probability that a given response
is prepared is thus dependent on the amount of PT and the g and ¢
parameters that describe the response preparation distribution.

We fit four extensions of this straightforward model to the partici-
pantdata. The first model—the Flat model—assumes that the prepara-
tion ofthe correctaction asimplyinvolves anincreasein the probability
of selecting that action over time (that is, the cumulative density func-
tionofequation (1), p,). Critically, the model treats the selection of any
ofthe seven other actions as equally probable at each time point. This
model captures the idea that even if participants mentally represent
thestructure of the task, only asingle actionis potentiated at any time
duringactionselection; thiswould be consistent with astrict separation
of deciding onthe correct stimulus-response associationand prepar-
ing actual motor commands. Moreover, this model would be the best
candidate for unstructured versions of the visuomotor mapping that
have noembedded structure (Experiment 5).

Inoursecond model variant—the Hierarchical model-we extended
equation (1) tothe preparation of ‘groupings’ of actions associated with
eachlevel,j, of the structured visuomotor mapping (Experiment 4):

T;=N(y;,0) 2

witheachlevel havingits owngand ofree parameters, and where each
pdescribes how long, on average, it takes for a participant to ‘resolve’
levelj of the learned mapping and prepare the relevant set of actions.
Specifically, preparing the top level involves preparing all four actions
onthe correcthand, preparing the middlelevelinvolves preparing the
correct couplet on each hand and preparing the lowest level involves
preparing the correct left-versus-right finger position across all cou-
plets. According to this model, if sequential resolving from top to bot-
tomofeachlevel of the visuomotor mapping potentiates the associated
motor commandsinreal time, the fitted z parameters should take the
lowest values for the top/hand level (that is, the top is resolved first),
middling values for the middle/couplet level and the highest values
for the low/finger level. In other words, according to this structured
action preparation model, the participantarrives at the correctaction
by sequentially ‘pruning’ the visuomotor mappingin real time. We fitan
additional variant of this model thatincluded only one ofree parameter
that was used at all levels of the structure to see if variance in PTs was
comparable across levels.

Lastly, we fit an additional variant of the model to formalize a
Feature-Based model of action selection. Here we only allowed for one
pand one o parameter but maintained the structured preparation of
action groupings; this model thus assumes that the learned feature-
action associations shaped action selection but with no temporal
prioritization of any particular features/levels.

Finally, we note that people often have to guess in the
forced-response task given the strict temporal criteria. The
goal-oriented action preparation processes described above are
thus mixed at each time point with a guessing or ‘lapse’ process that
assumes auniformprobability of any of the eight possible actions being
selected, with amixture parameter p that determines the weighting of
guessing versus goal-oriented action preparation. This mixture model
thus determines the final speed-accuracy probability function P of
selectingactiona:

P,=(1—-p)xp,+px1/8 3)

Response probabilities P generated by each model at each PT
(rounded to the nearest ms) were fit directly to actual participant
responses and PTs measured in the forced-response tasks (Experi-
ments 4 and 5). Parameter fits were optimized using the fmincon func-
tion in MATLAB. We ran 50 iterations of each fitting procedure for

each participantto avoid local minimain the optimized model fits. To
simulate the results, we computed the model’s response probability
functions using the best fit parameters for each participant and then
averaged the resulting curves over all participants.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data that support the findings of this study are available via GitHub
at https://github.com/jetrach/StructuredActionPrepVMDM.

Code availability

The code used is available via GitHub at https://github.com/jetrach/
StructuredActionPrepVMDM. The task code is available upon request.
Please refer to the Methods for details on the software used in this
project.
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