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Mental graphs structure the storage and 
retrieval of visuomotor associations
 

Juliana E. Trach    1   & Samuel D. McDougle    1,2

Much of human memory takes the form of cognitive graphs that allow us 
to relate and generalize knowledge. The influence of structured memory 
in the motor system is less clear. Here we examine how structured memory 
representations influence action selection when responses are retrieved from 
newly learned, hierarchical visuomotor maps. Human participants (N = 182) 
learned visuomotor mappings with (or without) an imposed latent structure 
that linked visual stimulus features (for example, colour or shape) to intuitive 
motor distinctions, such as hands and pairs of fingers. In participants who 
learned structured visuomotor mappings, transitional response times indicated 
that retrieving the correct response from memory invoked the ‘traversal’ of 
a structured mental graph. Forced-response experiments revealed similar 
computations within individual trials. Moreover, graph-like representations 
persisted even after multiple days of practice with the visuomotor mappings. 
Our results point to direct links between internal computations over structured 
memory representations and the preparation of movements.

Graph-like structures are ubiquitous in human cognition, from organ-
izing spatial knowledge to representing hierarchical plans and abstract 
sequences1–4. Graph-like mental representations have also been impli-
cated in the learning and planning of action sequences5,6, suggesting that 
such representations may be fundamental to both memory and cogni-
tive control. What is less clear is the relationship between structured 
memory and the real-time dynamics of selecting a single movement. Are 
structured memories strictly in the domain of cognition? Or might traces 
of internal memory structures also be echoed in the motor system?

Consider piano sight-reading, where clefs (for example, bass ver-
sus treble), note locations (for example, the third line on the staff) and 
accidentals (for example, sharps and flats) are combined to determine 
key presses (Fig. 1a). How does the sight-reading musician rapidly 
navigate their memory of symbol-to-finger mappings to produce fast, 
accurate finger movements? One possibility is that navigating this 
internal mapping and generating an action are strictly separable com-
putational stages. That is, musicians may implement an algorithm that 
parses features of the stimulus and queries an internal representation 
of the relevant symbol-finger mapping. Then, only when the decision 
about the desired response is complete, they shuttle the result (for 
example, D flat/right index finger) to their motor system. Alternatively, 
we hypothesize that people may automatically prepare relevant motor 

commands while in the process of querying visuomotor memory. For 
example, determining the clef might potentiate the fingers of one 
entire hand, and then determining the exact note might initiate the 
movement of one finger on that hand. This type of coupling between 
decision-making and movement would be consistent with work in both 
humans and animal models suggesting that sensory evidence accumu-
lation is echoed in the motor system7–16. However, in our proposal, this 
coupling is not dependent on the accumulation of perceptuomotor 
evidence (for example, dot motion tasks) but can be revealed even when 
an abstract memory representation mediates between perception and 
action. If supported, this idea would blur the lines between structured 
memory retrieval and movement selection processes.

Here, we aimed to test these competing hypotheses using a variant 
of an arbitrary visuomotor association learning task. Our primary goal 
was to understand how these more complex types of decisions—ones 
that require retrieving information from structured mental graphs—
may interact with the motor system on short timescales. To that end, 
our task motivated participants to use stimulus features (colour, shape 
and pattern) to determine correct responses, similar to musicians 
considering notes on the page as they prepare to play a note. Criti-
cally, individual features could be associated with different ‘levels’ of 
an intuitive motor hierarchy (Fig. 1b). The hierarchically structured 
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task (Fig. 1b,c) and a reaction time (RT) baseline task (Fig. 1d). Dur-
ing the task, the participants used trial-by-trial feedback to learn an 
eight-to-eight deterministic visuomotor mapping (Fig. 1b,c). To embed 
structure into the mapping, stimuli varied along three features (col-
our, shape and pattern), and we assigned each dimension to a level 
of an intuitive motor hierarchy (hand > finger-couplet > finger)22. For 
example, if shape was assigned to the highest level of the hierarchy—
hand—then the shape of the stimulus determined which hand contained 
the correct response (Fig. 1b). We confirmed that these mappings were 
intuitive to participants in a naive group of participants with a survey 
(Methods and Supplementary Fig. 1).

We used variation in RT between pairs of trials (‘transitional RTs’) 
as an index of whether people were sensitive to the structure of the 
mappings23,24. Transitional RT analyses involve classifying RTs on the 
basis of features of the current and previous trials or responses, rather 
than considering each trial independently. We isolated the impact of 
the mapping structure on transitional RTs and controlled for intrinsic 
finger-to-finger switch costs by subtracting the mean RT for each of the 
pairwise transitions between fingers measured during the RT baseline 
task from the RTs in the learning task for the same finger-to-finger 
transitions (Fig. 1e). The remaining variation in RT switch costs dur-
ing the learning task therefore should not be driven by intrinsic finger 
transition biases but rather by the latent structure of the mapping. We 
conducted all primary analyses on these corrected RTs.

We compared participant transitional RTs to the predictions of three 
theoretical models designed to explain transitional RTs: (1) a Hierarchical 
graph model (our hypothesis), (2) a Feature-Based model and (3) a Flat 
model (Fig. 2). We entered the corrected RTs (for consecutively correct 
trials only; Methods) into three linear mixed-effects models that opera-
tionalized each theoretical model and assessed the model fit for each.

mapping allowed us to make precise predictions about behaviour and 
ask whether the structure of an internal visuomotor mapping guides 
rapid movement preparation.

We established that a simple measure—participants’ trial-by-trial 
response times—could reveal the latent structure of a learned visuomo-
tor mapping (Experiment 1). We then accounted for various potential 
alternative explanations, such as intrinsic response time costs when 
switching between different fingers, in control experiments (Experiments 
2 and 3). Next, we used a variant of a forced-response-time paradigm to 
characterize within-trial retrieval dynamics17–19 (Experiments 4 and 5) by 
interrupting the retrieval of learned visuomotor associations at various 
time points during deliberation and measuring the resulting errors. We 
found evidence that people sequentially ‘prune’ the structured visuomo-
tor mapping from top to bottom during the preparation of single finger 
movements. These data could be described by a simple computational 
model in which stimulus features were prioritized during action selection 
on the basis of the mapping structure to dynamically potentiate differ-
ence clusters of potential motor actions. Finally, we show that interactions 
between action selection and the structure of the learned mapping persist 
even after extensive practice (eight days). We speculate that retrieving 
actions from a structured visuomotor memory invokes a navigation-like 
computation over a cognitive graph or neural state space2,20,21 and pro-
pose that this process can dynamically shape motor planning.

Results
Reaction times reflect the structure of learned mappings
Our goal was to understand how structured visuomotor mental repre-
sentations, akin to note–key pairings in music sight-reading (Fig. 1a), 
dynamically interact with the motor system during action selection. 
To do this, participants (N = 40) engaged in a visuomotor learning 
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Fig. 1 | Task design and baseline correction. a, Example musical notation and 
the associated action/key. b, Example visuomotor mapping with the correct key 
press for each of the eight stimuli and illustration of one specific feature-to-level 
assignment. Visuomotor mappings were counterbalanced across participants.  
c, Task schematic for the learning task. d, Task schematic for the RT baseline task. 

e, Visualization of RT baseline correction, with average RTs for each pairwise 
transition between fingers for the learning and RT baseline tasks (Experiment 1) 
depicted as heat maps. Baseline RTs are subtracted from learning task RTs to yield 
corrected RTs.
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First, the Hierarchical model used distance within the visuomotor 
mapping structure (that is, the number of graph edges between the 
current and previous stimuli in the hierarchical structure; [0,2,4,6]) to 
predict RTs. We use the term ‘path distance’ to refer to the number of 
graph edges between consecutive responses. In this model, longer path 
distances should be associated with slower transitional RTs. Second, 
the Feature-Based model predicted transitional RTs using the number 
of stimulus features that switched on a given transition ([0,1,2,3]). 
This model posits slower transitional RTs when more features of the 
stimulus change across trials but does not impose any structure or 
treat switching of specific features differently. Importantly, the design 
of the stimuli and underlying structure in the mapping ensured that 
the Hierarchical and Feature-Based models predict different patterns 
of RT behaviour (Fig. 2, bottom). Third, if participants were simply 
learning one-to-one associations between stimuli and actions but not 
representing any latent structure (a flat representation), switching 
from any response to any other response should incur comparable 
RT switch costs. The predictor for the Flat model was thus whether 
the stimulus repeated or switched across trials, with the assumption 
that repeating the same response facilitates RT. In addition to these 
theoretically grounded models, we included a Physical Distance model 
and a Nearest-Neighbour model (Methods) to operationalize a linearly 
modulated attentional effect where attention could be biased towards 
the previous response and thus responses far away from the previous 
response would take longer to prepare.

Our primary analyses provided convergent evidence that par-
ticipants represented the latent hierarchical structure in the mapping: 

corrected transitional RTs scaled with the path distance through a 
graph of the visuomotor mapping (Fig. 3a,c; two-tailed paired t-test, 
Bonferroni-corrected α = 0.05/6 = 0.008; 6-distance versus 4-distance: 
t39 = 3.24; P = 0.002; Cohen’s d = 0.30; 95% confidence interval (CI), (17.8, 
77.3); 6-distance versus 2-distance: t39 = 8.50; P < 0.001; Cohen’s d = 1.35; 
95% CI, (148.6, 241.3); 6-distance versus 0-distance: t39 = 13.6; P < 0.001; 
Cohen’s d = 2.73; 95% CI, (315.2, 425.4); 4-distance versus 2-distance: 
t39 = 7.12; P < 0.001; Cohen’s d = 1.05; 95% CI, (105.5, 189.3); 4-distance 
versus 0-distance: t39 = 13.11; P < 0.001; Cohen’s d = 2.44; 95% CI, (272.9, 
372.5); 2-distance versus 0-distance: t39 = 13.92; P < 0.001; Cohen’s 
d = 1.59; 95% CI, (149.8, 200.8)). In other words, RTs monotonically 
increased with our hypothesized path distance metric (Fig. 3c). This 
result was further supported by the mixed-effects models: the Hierar-
chical model reliably produced the best fit to the behaviour, compared 
with the four competing models (Bayesian information criterion (BIC): 
Hierarchical, 330,109; Feature-Based, 330,171, Flat, 330,581, Physical 
Distance, 330,790; Nearest-Neighbour, 330,563; Fig. 3d). We replicated 
this result in a separate group of participants (N = 27) who were trained 
on a modified hierarchical structure (Supplementary Fig. 2). We also 
found that participant errors reflected the mapping structure (Sup-
plementary Fig. 3). These findings suggest that participants learned 
and mentally represented the structure of the visuomotor mapping. 
Furthermore, the structure affected trial-by-trial RTs and errors.

Unstructured mappings yield different RT profiles
One potential concern about these results is that the RT baseline cor-
rection might not sufficiently control for intrinsic motor switch costs. 
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We implemented two additional control studies that addressed this 
concern in different ways. In both, we removed the latent structure 
from the task and trained participants on ‘unstructured’ mappings 
(Fig. 3e,i). In Experiment 2, we used simpler stimuli than in Experi-
ment 1 to ensure that there was no possibility of extracting any latent 
structure in the mapping. This experiment was designed to rule out 
the possibility that the results of Experiment 1 would arise from any 
eight-to-eight stimulus–action mapping regardless of structure. In 
Experiment 3, we constructed ‘unstructured’ mappings using the same 
three-feature stimuli from Experiment 1 (Supplementary Fig. 4). In 
these experiments, we quantified path distance using the same logic 
as the hierarchical mapping (from Experiment 1) and performed the 
same RT analyses.

In both cases, the data were not well fit by the Hierarchical model. 
In Experiment 2, we found that the Flat model was a better fit for 
participant behaviour (that is, lower BIC; Fig. 3h; BIC: Hierarchical, 
325,873; Flat, 325,546; Physical Distance, 326,074; Nearest-Neighbour, 

325,683). Transitional RTs were facilitated on repeat trials but were 
effectively equivalent across trials where the stimulus changed (Fig. 3g; 
two-tailed paired t-test, Bonferroni-corrected α = 0.05/6 = 0.008; 
0-distance versus 2-distance: t32 = 11.98; P < 0.001; Cohen’s d = 1.75; 
95% CI, (175.9, 248.0); 0-distance versus 4-distance: t32 = 11.31; P < 0.001; 
Cohen’s d = 1.83; 95% CI, (197.2, 283.7); 0-distance versus 6-distance: 
t32 = 10.68; P < 0.001; Cohen’s d = 1.80; 95% CI, (192.4, 283.2); 2-distance 
versus 4-distance: t32 = 2.39; P = 0.023; Cohen’s d = 0.21; 95% CI, (4.3, 
52.7); 2-distance versus 6-distance: t32 = 2.23; P = 0.033; Cohen’s 
d = 0.18; 95% CI, (2.3, 49.4); 4-distance versus 6-distance: t32 = −0.35; 
P = 0.725; Cohen’s d = 0.02; 95% CI, (−17.8, 12.5)). For Experiment 3, the 
Nearest-Neighbour model was the best-fitting model (Fig. 3l; BIC: Hier-
archical, 58,706; Flat, 58,716; Feature-Based, 58,768; Physical Distance, 
58,811; Nearest-Neighbour, 58,642), and RTs did not linearly increase 
with path distance (Fig. 3k; Bonferroni-corrected α = 0.05/6 = 0.008; 
0-distance versus 2-distance: t25 = 5.5; P < 0.001; Cohen’s d = 1.48; 95% 
CI, (148.3, 325.9); 0-distance versus 4-distance: t25 = 9.04; P < 0.001; 
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Cohen’s d = 2.17; 95% CI, (241.0, 383.2); 0-distance versus 6-distance: 
t25 = 10.58; P < 0.001; Cohen’s d = 2.56; 95% CI, (267.3, 396.5); 2-distance 
versus 4-distance: t25 = 2.19; P = 0.038; Cohen’s d = 0.45; 95% CI, (4.6, 
145.4); 2-distance versus 6-distance: t25 = 2.78; P = 0.010; Cohen’s d = 0.6; 
95% CI, (24.7, 165.0); 4-distance versus 6-distance: t25 = 0.76; P = 0.457; 
Cohen’s d = 0.14; 95% CI, (−34.1, 73.7)). Taken together, these results 
refute the possibility that our previous results were an artefact of link-
ing our mapping to physical effectors and suggest that latent mapping 
structure impacts the pattern of RTs.

Model-free clustering of RTs reproduces latent structure
We performed a model-free clustering analysis to reconstruct the map-
pings from transitional RT data25,26 (R packages cluster and factoextra). 
We predicted that this analysis would reproduce the hierarchical struc-
ture of the mapping for Experiment 1 but yield idiosyncratic structures 
when there was no consistent structure. We calculated average RTs for 
each pairwise transition between responses to obtain a transitional 
RT profile for each target stimulus. We then calculated the Euclidean 
distances between the RT profiles and performed clustering on the 
transitional RT profiles. Finally, we visualized the inferred structure 
of the mapping with dendrograms (Fig. 3n–p).

The clustering algorithm faithfully reproduced the latent structure 
of the mapping from Experiment 1 (Fig. 3n). In contrast, experiments 
without latent structure yielded idiosyncratic dendrograms (Fig. 3o–q). 
This data-driven analysis further demonstrates that individuals learned 
and used the structure built into the task when it was available and 
reiterates our finding that the format of memory representations 
can be inferred from a simple behavioural measure—transitional RTs.

Experiments 4 and 5: within-trial dynamics of action selection
The results from Experiments 1–3 show that the structure of a visuo-
motor mapping shapes trial-by-trial action selection. We posited that 
this result could arise from individuals mentally traversing an internal 
representation of the visuomotor mapping—a cognitive graph—to 
retrieve correct responses, similar to the traversal of structured mental 
representations of non-motor content found in other domains27–29. We 
hypothesized that this latent traversal process would automatically 
communicate with the motor system, potentiating relevant sets of 
actions in real time as people query nodes in the cognitive graph. In 
the context of our task, participants might sequentially potentiate 
(or prune) responses by considering those that share the top-, then 
mid- and finally low-level features of the stimulus to arrive at the cor-
rect response. This sequential dynamic is structured, as the latent 
structure of the mapping directly shapes the action selection pro-
cess. In contrast, an unstructured dynamic would describe a process 
where the latent structure of the mapping is not evident in the action 
selection process.

We tested this hypothesis using a paradigm designed to elicit 
responses at different points during action selection on each trial. We 
trained two groups of participants on either the structured visuomo-
tor mapping used in Experiment 1 (Experiment 4) or an unstructured 
visuomotor mapping, as in Experiment 2 (Experiment 5). We then 
compared the probabilities of different types of errors as a function of 
how long participants had to prepare their responses on a given trial.

Learning task results: replication of Experiments 1 and 2
The learning phase results replicated the results of Experiments 1 and 
2, respectively (Supplementary Fig. 5). That is, the Hierarchical model 
was the best fit for participants trained on the structured mapping 
(BIC: Hierarchical, 117,458; Feature-Based, 117,656; Flat, 117,930; Physi-
cal Distance, 117,981; Nearest-Neighbour, 118,395), and the Flat model 
was the best fit for participants trained on the unstructured mapping 
(BIC: Hierarchical, 70,254; Flat, 70,134; Physical Distance, 70,350; 
Nearest-Neighbour, 70,381). The model-free hierarchical clustering 
algorithm again reliably reproduced the latent structure in the task 

for participants trained on a structured mapping (Experiment 4) but 
not an unstructured mapping (Experiment 5; Supplementary Fig. 5).

Action preparation dynamics accord with mapping structure
After learning, the participants performed a forced-response task 
(Fig. 4a). During this task, the participants heard four beeps on every 
trial and were instructed to synchronize their response with the fourth 
beep, regardless of whether they felt prepared to respond18,19. We var-
ied the stimulus onset during each trial to manipulate the amount of 
preparation time (PT; that is, the time between stimulus onset and 
the fourth beep) that participants had (100 ms–1.2 s). On some trials, 
participants had sufficient time to plan and execute their responses, 
and on other trials they were forced to guess. Our analyses focus on the 
types of errors participants made as a function of PT. We examined the 
within-trial dynamics of action selection, rather than considering the 
influence of previous trials, as the forced-response paradigm neces-
sitates a large number of error trials, which are difficult to interpret in 
transitional RT analyses (but see Supplementary Fig. 6 for analysis of 
previous trial effects).

Our main question was whether participants sequentially visit 
nodes on the cognitive graph of the visuomotor mapping and simul-
taneously prepare relevant sets of actions (structured action prep-
aration) or not (unstructured action preparation). Consider again 
the example of the pianist: the structured preparation hypothesis 
describes a model of behaviour where they parse the musical notation 
and, at the same time, potentiate movements associated with different 
levels (clef, note location, accidental and so on) of an implied cognitive 
graph. The unstructured hypothesis, in contrast, describes a dynamic 
where they first determine the appropriate action (cognitive stage) 
before potentiating that response in the motor system (motor stage).

Crucially, these two hypotheses predict different patterns of 
errors. For structured action preparation, we expected top-level errors 
(that is, hand errors) to be less frequent than mid- or low-level errors 
(couplet or finger-level errors), since resolving the top level of the 
response should occur before resolving the lower two levels. Similarly, 
mid-level (couplet) errors should be less frequent than low-level errors, 
and low-level errors should be the most frequent, since it takes the most 
amount of time to finally resolve the subordinate level. There should 
thus be an orderly procession of error-type probabilities from top to 
bottom. In contrast, if participants do not plan any finger movements 
prior to a terminal decision, we would not expect any orderly progres-
sion of error types (unstructured action preparation). We note that 
while the structure of the mapping is hierarchical, the structured pat-
tern of behaviour does not necessitate a strictly hierarchical dynamic 
where superordinate features of the mapping must be fully resolved 
before lower-level features are processed; a structured dynamic could 
also arise from stimulus features being prioritized from top to bottom 
but with partially parallel processing of features. We focus here instead 
on evidence for structured versus unstructured action selection, rather 
than subtle differences between variants of a structured dynamic.

We classified responses as top-, mid- or low-level errors on the 
basis of shared features between the target stimulus and the stimulus 
associated with the response participants made (Fig. 4b). For example, 
if the target response was key D, then responding with key F would be 
considered a low-level error (that is, the hand and couplet are correct, 
but the wrong finger was chosen), key A or key S would be a mid-level 
error (that is, the correct hand was chosen, but not the correct couplet) 
and responding with any finger on the right hand would be a top-level 
error. We then normalized that probability by the number of responses 
that were classified as each type of error to account for the fact that 
there were more ways to commit top-level errors (four responses) than 
mid-level (two responses) or low-level (one response) errors.

We found clear evidence of structured action preparation for 
participants trained on the structured mapping: the probability of 
errors at different levels of the task stacked in an orderly fashion, such 
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that top-level errors were the least frequent and resolved quickly, while 
low-level errors were the most frequent and resolved slowly (Fig. 4c; 
see also Supplementary Fig. 7a–c). We did not see this pattern for par-
ticipants trained on the unstructured mapping (Experiment 5; Fig. 4d 
and Supplementary Fig. 7d–f). An analysis of variance (ANOVA) on the 
normalized probability of errors at each level across all PTs (Experiment 
(4 versus 5) × Error Level (top, mid, low)) revealed significant main 
effects of Experiment (F1,52 = 23.7, P < 0.001, η2 = 0.31) and Error Level 
(F1.65,87.51 = 55.4, P < 0.001, η2 = 0.51). Crucially, we found a significant 
interaction between Experiment and Error Level, reflecting the differ-
ent selection dynamics between the two experiments (Experiment × 
Error Level: F1.65, 87.51 = 9.34, P < 0.001, η2 = 0.15).

Post hoc t-tests showed that the probability of errors stacked in an 
orderly manner, such that low-level errors were the most common and 
top-level errors were the least common for participants trained on the 
structured mapping (Supplementary Fig. 8; low-level versus mid-level 
errors: t35 = 6.38; P < 0.001; Cohen’s d = 0.98; 95% CI, (0.02, 0.05); 
mid-level versus top-level errors: t35 = 7.95; P < 0.001; Cohen’s d = 1.1; 95% 
CI, (0.03, 0.04)). In contrast, in Experiment 5, low- and mid-level errors 
did not differ in their frequency (t18 = 1.51; P = 0.149; Cohen’s d = 0.48; 95% 
CI, (−0.006, 0.04)), but top-level errors were less frequent than mid- or 
low-level errors (top versus mid: t18 = 2.99; P = 0.008; Cohen’s d = 0.58; 
95% CI, (0.02, 0.004); top versus low: t18 = 3.36; P = 0.003; Cohen’s d = 1.0; 
95% CI, (0.05, 0.01)). Taken together, participants in Experiment 4 arrived 
at the correct action by pruning the visuomotor mapping in real time, 
while participants in Experiment 5 displayed a different pattern of errors.

One alternative explanation for the effects observed in Experi-
ment 4 is that participants may be reacting to the visual similarity 
between the target stimulus and the stimulus associated with the 
low-level error response. The stimulus associated with the low-level 
error response shares two of three features with the target stimulus 
by definition; thus, it is possible that the increased probability of this 
response was driven by visual similarity. Importantly, there are three 
stimuli that share two features with the target stimulus in the structured 
visuomotor mapping: one of these three stimuli is the low-level error, 
one a mid-level error and one a top-level error, even though they all 
share two features with the target. We thus compared the probability 
of making each of these types of errors (Fig. 4e, left). Participants were 
still most likely to make the low-level versus mid- or top-level errors, 
even when the stimuli were matched for visual similarity with the target 
(Bonferroni-corrected α = 0.05/2 = 0.025; low- versus mid-level error: 
t35 = 5.48; P < 0.001; Cohen’s d = 0.92; 95% CI, (0.02, 0.05); low- versus 
top-level error: t35 = 7.24; P < 0.001; Cohen’s d = 1.57; 95% CI, (0.04, 
0.07); mid- versus top-level error: t35 = 2.4; P = 0.02; Cohen’s d = 0.46; 
95% CI, (0.003, 0.03)). Furthermore, the pattern of errors was different 
between Experiments 4 and 5 (mixed-factor ANOVA: Experiment × Error 
Type: F1.22,64.51 = 14.8, P < 0.001, η2 = 0.22). Specifically, while participants 
in Experiment 4 were more likely to make mid-level errors than top-level 
errors, this was not the case in Experiment 5 (t18 = −0.39; P = 0.699; 
Cohen’s d = −0.08; 95% CI, (−0.01, 0.008)). This strongly suggests 
that our results were driven not by the visual similarity of the stimuli 
but rather by the latent structure of the learned visuomotor mapping.
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Fig. 4 | Forced-response design and results. a, Diagram of a forced-response 
trial. The vertical arrows indicate the stimulus onset and response cue. PT, 
preparation time. b, Error coding for an example trial. Errors were coded on the 
basis of the highest level feature that mismatched between the target stimulus 
and the stimulus associated with the response the participant made. c, Forced-
response results for Experiment 4 (N = 36). The inset is the same, without the 
line for correct trials for a clearer view of error probabilities. d, Forced-response 
results for Experiment 5 (N = 19). The inset is the same, without the line for correct 
trials. e, Left, probability of errors that share two visual features with the target 
in Experiment 4 (N = 36). Two-tailed, Bonferroni-corrected t-test, top versus 
mid, P = 0.002; mid versus low, P < 0.001. Right, same plot for Experiment 5 
(N = 19) with errors labelled with the same structure as Experiment 4. Two-tailed, 

Bonferroni-corrected t-test, top versus mid, P = 0.715; mid versus low, P < 0.001. 
f, Probability of a within-couplet (purple; that is, low-level) error versus an across-
couplet (pink; that is, mid-level) error when there are two possible adjacent finger 
errors. The left panel shows results for Experiment 4 (N = 36; two-tailed t-test, mid 
versus low, P = 0.003), and the right panel shows results for Experiment 5 (N = 19; 
two-tailed t-test, mid versus low, P = 0.310). g, Model logic and predictions of 
structured and unstructured action preparation models. h, Model simulation 
with averaged fitted parameters for the best-fitting hierarchical three-σ model 
from Experiment 4. i, Model simulation with averaged fitted parameters for the 
best-fitting flat model from Experiment 5. Note that lines for errors at different 
mapping levels are on top of each other. The data in c–f are presented as mean 
values ± 1 s.e.m. **P < .01; ***P < 0.001.
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Another possibility is that spatial proximity to the target response 
could drive the increased likelihood of low-level errors (that is, action 
slips with neighbouring fingers). To address this possibility, we com-
pared the probability of making a low-level error to the probability of 
making a mid-level error that was also adjacent to the target response 
(on trials where there were responses on either side of the target 
response). For participants trained on the unstructured mapping 
(Experiment 5), the two types of adjacent errors were equally probable 
(Fig. 4f, right; t18 = 1.04; P = 0.311; Cohen’s d = 0.48; 95% CI, (-0.11, 0.31)), 
supporting the presence of these spatially driven generic motor errors. 
In contrast, participants trained on the structured mapping (Experi-
ment 4) were significantly more likely to commit low-level adjacent 
errors (that is, consistent with the structure of the task) than the alterna-
tive adjacent errors (Fig. 4f, left; t35 = 3.20; P = 0.003; Cohen’s d = 1.07; 
95% CI, (−0.2, −0.04)). These control analyses (Fig. 4e,f) provide con-
vincing evidence that the pattern of errors observed in Experiment 4 
was a direct result of the structure of the learned mapping.

Computational modelling of distinct action selection 
dynamics
We used computational models to further clarify the visuomotor pro-
cessing dynamics and compare the results across Experiments 4 and 
5. The basic design of the model posits that preparing an action takes 
some mean amount of time μ with variance σ and is normally distrib-
uted18 (Methods). These distributions can be transformed into curves 
that describe the probability of making a specific response as a function 
of PT by taking their cumulative density. We compared four variants of 
this model to characterize response dynamics in our structured and 
unstructured tasks. To adapt this model to our hierarchically structured 
task, we allowed for three μ parameters to vary freely, one for each 
level of the mapping (Fig. 4g). We fit one version of this Hierarchical 
model that included a single σ parameter that was used at each level of 
the mapping and another version that included separate σ parameters 
for each level of the mapping. We also fit a Feature-Based model and 
a Flat model for comparison (Methods). We predicted that one of the 
Hierarchical models would best capture participant behaviour when 
they learned a structured mapping (Experiment 4) and that the Flat 
model would best capture behaviour for participants trained on an 
unstructured mapping (Experiment 5).

As predicted, the Hierarchical models were the best fit for par-
ticipant behaviour for participants trained on the structured map-
ping (Hierarchical-three-σ: summed BIC = 76,517; Hierarchical-one-σ: 
summed BIC = 76,536; Feature-Based: summed BIC = 77,767; Flat: 
summed BIC = 78,054). Fitted μ parameters were consistent with a 
sequential pruning process—μtop (0.615 s) was smaller than μmid (1.01 s), 
and μmid was smaller than μlow (1.26 s; Wilcoxon signed-rank test: top 
versus mid: z = 4.32; P < 0.001; effect size, r = 0.72; mid versus bot-
tom: z = 4.07; P < 0.001; effect size, r = 0.72). In contrast, participants 
trained on the unstructured mapping were better fit by the Flat model 
(Hierarchical-three-σ: summed BIC = 34,863; Hierarchical-one-σ: 
summed BIC = 34,732; Flat: summed BIC = 30,917). Example model 
simulations are pictured in Fig. 4h,i. These results provide further 
evidence of structured action preparation during retrieval of visuo-
motor associations.

Structured dynamics persist after extensive practice
One open question is whether the traversal of the structured representa-
tion is a transient phenomenon that appears only when people are first 
forming the visuomotor memory, or whether it persists even with exten-
sive practice. To address this question, we had participants (N = 20) 
practise a hierarchically structured mapping (as in Experiment 1)  
over eight consecutive days (Experiment 6; Methods and Fig. 5a,b). 
We compared transitional RTs between Day 1 and Day 8 of the study, 
as in the previous experiments. Comparison of the RT profiles on Day 
1 versus Day 8 revealed that RTs again varied as a function of path dis-
tance (Fig. 5c; ANOVA: Day × Path Distance: main effect of Path Distance: 
F3,57 = 64.0, P < 0.001, η2 = 0.77), and also that participants were signifi-
cantly faster during the last session (main effect of Day: F1,19 = 37.54, 
P < 0.001, η2 = 0.67). Additionally, a significant interaction effect sug-
gested that the pattern of RTs was subtly different between the first 
and last days of practice (F1,19 = 19.73, P < 0.001, η2 = 0.51).

To ascertain whether the structured cognitive representation had 
compressed to a flat representation, we compared the RT profiles on 
Day 8 to those from the participants in Experiment 5 (where partici-
pants were trained on an unstructured mapping). Average RT and accu-
racy were comparable between the end of the last session of Experiment 
6 and the end of free-response phase of Experiment 5 (RT: t36.7 = 0.82; 
P = 0.416; Cohen’s d = 0.26; 95% CI, (−61.5, 145.7); accuracy: t30.6 = 0.20; 
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P = 0.839; Cohen’s d = 0.07; 95% CI, (−0.04, 0.05)), so this analysis addi-
tionally addresses whether the results of Experiment 5 were driven 
by overall better performance with the simple stimuli rather than the 
different structure of the mapping. Interestingly, we found that the pat-
tern of RTs on the last day of this study were significantly different from 
the pattern of RTs in Experiment 5 (mixed-factor ANOVA: Experiment 
× Path Distance: main effect of Path Distance: F2.0,74.6 = 70.48, P < 0.001, 
η2 = 0.66; Experiment × Path Distance: F2.0,74.6 = 4.53, P = 0.014, η2 = 0.11), 
although there were no overall differences in RT between these samples 
(main effect of Experiment: F1,37 = 0.83, P = 0.368, η2 = 0.02). Further-
more, from the linear mixed-effects modelling, we found that across all 
eight days, the Hierarchical model was the best fit for participant behav-
iour (see Supplementary Table 1 for BIC values). Together, these results 
indicate that participants continued to leverage the latent structure in 
the mapping to retrieve their responses even after extensive practice.

A subset of these participants (N = 9) also completed the 
forced-response task on the first and last days of the experiment, 
allowing us to address whether the structured dynamics we revealed 
in Experiment 4 persist after extensive practice. First, we examined 
changes in the probability of errors at different levels of the mapping 
between the first and last days of the experiment (Fig. 5d). We con-
ducted an ANOVA with one factor for Day (1 versus 8) and another for 
Error Level (top, mid, low) on the normalized probabilities of errors at 
each level of the task (excluding correct responses). There was a sig-
nificant effect of Day (F1,8 = 9.75, P = 0.014, η2 = 0.55), as participants had 
overall higher accuracy during the session on the eighth day. In addi-
tion, there was a significant effect of Error Level (F2,16 = 19.34, P < 0.001, 
η2 = 0.71), though the interaction was not significant (Day × Error Level: 
F2,16 = 1.88, P = 0.185, η2 = 0.19), indicating that the pattern of errors was 
similar across the two sessions.

We followed this ANOVA with post hoc t-tests to compare the 
frequency of errors across levels of the mapping. On Day 1, we found 
that error probabilities stacked such that low-level errors were more 
frequent than mid-level errors and mid-level errors were more frequent 
than top-level errors (Bonferroni-corrected α = 0.05/2 = 0.025; mid 
versus low: t8 = 3.55; P = 0.008; Cohen’s d = 1.1; 95% CI, (0.02,0.07); top 
versus mid: t8 = 3.00; P = 0.017; Cohen’s d = 0.95; 95% CI, (0.007, 0.05)). 
On Day 8, low-level errors were again more frequent than mid-level 
errors (mid versus low: t8 = 2.85; P = 0.021; Cohen’s d = 1.1; 95% CI, 
(0.008,0.07)); however, the comparison between top- and mid-level 
errors did not survive correction (t8 = 2.36; P = 0.046; Cohen’s d = 0.51; 
95% CI, (0.0002, 0.02)). This pattern of results held when we incorpo-
rated PT as well (Supplementary Fig. 9).

Finally, we fit the PT models discussed previously (Fig. 4g; 
Hierarchical-one-σ, Hierarchical-three-σ, Feature-Based and Flat) 
to the data from Experiment 6. The Hierarchical models were the 
best fit for participant data during the first and last sessions (Day 
1: Hierarchical-one-σ: summed BIC = 17,680; Hierarchical-three-σ: 
summed BIC = 17,674; Feature-Based: summed BIC = 18,012; Flat: 
summed BIC = 18,105; Day 8: Hierarchical-one-σ: summed BIC = 14,260; 
Hierarchical-three-σ: summed BIC = 14,268; Feature-Based: summed 
BIC = 14,446; Flat: summed BIC = 14,255), although the additional σ 
parameters in this case did not produce a substantially better model 
fit. Furthermore, reductions in the value of the fitted μ parameters 
reflect the idea that participants are getting faster with practice but 
not necessarily compressing the representation (Fig. 5e)—the fitted 
parameters suggest that retrieval is faster on Day 8 but still affected 
by the latent structure. Taken together, these results demonstrate that 
the structure of the cognitive representation continued to be echoed 
in response retrieval dynamics after extensive practice.

Discussion
Complex memory structures, such as cognitive maps and graphs, 
are typically studied in the domain of higher-level cognition. But 
what happens at the interface of structured memory and movement 

preparation? In these studies, we examined interactions between 
retrieving visuomotor memories and rapid action selection in the 
context of graph-like memory representations. We hypothesized that 
the structure of the memory representation would constrain action 
selection dynamics and prompt a navigation-like computation over 
this latent structure, as is evident in other domains5,6,28,30. Our results 
support this hypothesis: when participants were trained on hierar-
chically structured visuomotor mappings, participant transitional 
response times closely tracked the structure of the learned visuomotor 
mapping (Experiment 1). This finding provided behavioural evidence 
that individuals learned and used that structure to retrieve responses 
on a trial-by-trial basis. Furthermore, this result held after controlling 
for intrinsic switch costs between fingers and was abolished when 
structure was removed (Experiments 2 and 3).

We expanded on this finding in Experiments 4 and 5 to character-
ize how the learned mappings constrained action selection within the 
scope of individual trials: participants’ errors systematically varied as 
a function of movement PT in a manner consistent with a structured 
model of action selection; that is, we found evidence that participants 
resolved hierarchical levels of the cognitive graph from top to bot-
tom and concurrently potentiated relevant sets of actions. This effect 
was not seen when the learned mapping did not contain a structured 
relationship between perceptual features and actions (Experiment 5),  
helping to rule out explanations based on more basic processes of 
action preparation31. Finally, in Experiment 6 we tested the persis-
tence of this structured retrieval process with increased practice and 
found that structured action selection dynamics were evident even 
after eight days of practice. Taken together, our findings point to a 
dynamic, rapid interaction between a cognitive process—an inter-
nal navigation-like computation over a structured memory—and the 
preparation of movements.

Our results thus suggest that graph-like representational formats 
can be used in the context of action selection and interface directly 
with motor preparation processes. It is possible that distances in a 
low-dimensional neural ‘state space’ may correlate with the path dis-
tances we posit in our study, where navigation could reflect internal 
control processes involved with traversing or reconfiguring these 
state spaces21. This could occur via sequentially prioritizing different 
visual features (and simultaneously activating different action sets) 
at different times. Indeed, similar processes have been proffered to 
explain classic task-switching effects32. Moreover, there is evidence that 
neural activity and participant RTs can scale with path length through 
a putative cognitive graph28,33. At the neural level, such structured rep-
resentations are typically believed to exist in traditionally ‘non-motor’ 
regions such as the hippocampus and orbital frontal cortex2,34–38, rais-
ing the possibility that these regions might also be involved in storing 
and accessing structured perceptuomotor mappings.

Our work is also related to a large literature examining informa-
tion flow between sensory evidence accumulation and the motor 
system during perceptual decision-making. This work has suggested 
that pre-movement activity in the motor system can reflect ongoing 
evidence accumulation processes in perception10,39–44. A large body 
of research using mouse- and eye-tracking methods during simple 
decision-making tasks also suggests that movements act as continuous 
read-outs of evolving decision processes, rather than being the output 
of a terminal decision process8,11–14,16,45–49. While this perspective gener-
ally aligns with our results, we note that our behavioural approach limits 
our ability to take a strong stance on the putative ‘continuity’ of these 
cognitive–motor interactions. The fully continuous model proposed 
in previous work represents one extreme version of cognitive–motor 
interactions during decision-making. The other extreme in this case is 
a discrete model where decision-making processes fully precede any 
preparatory activity in the motor system. Indeed, there is evidence 
that the truth lies somewhere in the middle of these two models—the 
degree of continuity in information flow depends at least to some 
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degree on a variety of task features and the granularity of the decision50. 
Our results could be interpreted as evidence for a softer version of a 
discrete model, as long as such a model allows for multiple response 
selection stages within the scope of individual decisions (that is, at 
each level of the mapping).

In terms of within-decision dynamics (Experiments 4 and 5), some 
results in the cognitive control domain contrast with the structured 
processing dynamic that we identified here. Specifically, research with 
behavioural and neural recording methods has not found evidence 
of sequential pruning of potential responses during hierarchically 
structured cognitive control tasks51,52. Instead, people may process 
hierarchical levels of a structured mapping simultaneously in these 
cases. Parallelization in these tasks is thought to be possible due to a 
hypothesized hierarchical gradient of representational abstraction in 
the prefrontal cortex53,54, where different areas of the prefrontal cortex 
can process different task rules/levels in parallel. A useful future direc-
tion could be to link previous work on task rules and cognitive control 
to our current study, where the structured representation was not 
defined by any strict hierarchical or contextual cues but rather was 
directly linked to motor effectors.

Our focus on newly learned visuomotor mappings naturally raises 
questions about how action selection dynamics might evolve with 
experience and, ultimately, expertise. If participants practised the 
mapping for longer (that is, becoming ‘experts’ at the mapping), would 
they show ‘flattening’, transforming the structured representation 
into a direct 8–8 stimulus–response mapping? Experiment 6 argued 
against this. Instead, action preparation was still closely linked to the 
latent structure of the mapping even after thousands of trials. Revisit-
ing our pianist learning to parse musical notation while planning finger 
movements, early in learning the pianist is probably explicitly parsing 
individual symbols in order (clef → note → accidentals), dynamically 
and automatically potentiating different actions as they determine 
the correct key to press. What happens after years of training? Instead 
of overtrained stimulus–response associations becoming crystallized 
into flattened ‘instances’55,56, it may be that experts who are overtrained 
on our task, or even tasks like music sight-reading, still use a sequential 
parsing algorithm even after extensive practice but simply speed the 
algorithm up.

Our study has several limitations. First, our modelling is somewhat 
constrained; additional computations, such as an evidence accumula-
tion threshold for proceeding through levels of the visuomotor map-
ping, could be added. Relatedly, our model does not delineate between 
the strictest possible version of a hierarchical processing model, where 
moving to the next level in the mental mapping can happen only after 
resolving the previous level, and looser variants of hierarchical dynam-
ics, where different levels may be processed simultaneously but per-
haps with some being prioritized over others. In any case, it is likely 
that there are both parallel and sequential processing dynamics at 
play during our task—an idea that has been debated for decades57–59. 
Finally, we focused here on navigation ‘down’ from a superordinate 
control node to the appropriate response in Experiments 4 and 5 and 
did not test whether there is evidence for ‘climbing back up’ the puta-
tive tree. Our design is not optimized for these analyses, although our 
supplemental analyses provide some initial evidence for this effect 
(Supplementary Fig. 6).

Taken together, our results suggest that cognitive memory 
structures can directly shape the dynamics of action selection. 
This work goes beyond previous findings in lower-level perceptual 
decision-making10,39–44 by linking the potentiation of actions to 
higher-level structured memory representations. Our study thus 
makes new connections between research on cognitive maps and 
graphs in organizing behaviour and knowledge2,60,61 and the study of 
sensorimotor learning and control, perhaps offering a new avenue 
for understanding the format of mental representations in complex, 
naturalistic visuomotor skills. Overall, our work raises questions about 

nominal distinctions between high-level cognitive processing and 
motor processing and provides evidence in support of a highly interac-
tive, dynamic blending of cognition and action.

Methods
All protocols were approved by Yale University’s Institutional Review 
Board, protocol number 2000027351.

Participants
We recruited participants for Experiments 1–5 from the Yale University 
undergraduate community (Experiment 1, N = 44; modified structure 
control, N = 29; Experiment 2, N = 34; Experiment 3, N = 28; Experi-
ment 4, N = 40; Experiment 5, N = 20), and all experiments were con-
ducted in line with a protocol approved by the university’s Institutional 
Review Board. All participants provided informed consent prior to the 
initiation of any study protocols. The participants received course 
credit for their participation. All participants reported that they were 
not colour-blind and had normal or corrected-to-normal vision. We 
planned a priori to exclude participants that did not show reliable 
evidence of learning by excluding participants that did not show over 
25% accuracy for at least four of the eight visuomotor associations 
(total exclusions: Experiment 1, N = 3; modified structure control, 
N = 1; Experiment 2, N = 0; Experiment 3, N = 1; Experiment 4, N = 4; 
Experiment 5, N = 1). There were also a small number of exclusions due 
to technical issues (Experiment 1, N = 1; Experiment 2, N = 1; Experi-
ment 3, N = 1). Additionally, we planned to exclude participants who 
were not attentive to the task by excluding participants who did not 
respond on at least 75% of the trials in the learning task for Experi-
ments 1–3 and in the learning or forced-response task in Experiments 
4 and 5. No participants met this exclusion criterion. After exclusions, 
we had 40 participants in Experiment 1 (N female, 17; mean age, 20.1 
years), 28 participants in the modified structure control (N female, 20;  
mean age, 19.1 years), 33 participants in Experiment 2 (N female, 18; mean 
age, 19.7 years), 26 participants in Experiment 3 (N female, 16; mean  
age, 19.3 years), 36 participants in Experiment 4 (N female, 19;  
mean age, 19.6 years) and 19 participants in Experiment 5 (N female, 
15; mean age, 20.2 years).

Experiment 1
Task design. Experimental sessions for Experiment 1 were approxi-
mately one hour long and consisted of an RT baseline task, a task train-
ing phase and the learning task. The task was coded in jsPsych (version 
6.1.0)62. All data reported in this manuscript were collected on a Lenovo 
IdeaPad 5 (Ubuntu 22.04).

RT baseline task. The participants first completed an RT baseline 
task to measure intrinsic finger-to-finger switch costs without the 
influence of the learning task. They performed the baseline task again 
following the learning task. Both instances of this task were identical 
and lasted approximately 5 min. During this task, the participants 
used their left hand (on keys A, S, D and F) and right hand (on keys H, 
J, K and L) to respond to the position of a target green square on the 
screen. On each trial, they would see eight squares on the screen that 
were spatially aligned with their fingers on the keyboard. Seven of the 
squares were white, while one square was green. Their goal was to press 
the key aligned with the green square. Once they had made the correct 
response, all squares turned white for 100 ms before another square 
turned green to initiate the next trial. The next trial did not begin until 
the participant made the correct response. We used this constraint to 
avoid having participants rapidly responding with incorrect responses 
to expedite the task. Only trials where participants made the correct 
response on their first attempt were included in analysis. Additionally, 
we excluded the first five trials in the task from analysis to account for 
slowed RTs at the beginning of the block. Trial sequences included all 
pairwise transitions between fingers (including repeating the same 
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finger) a minimum of four times to ensure a stable switch cost estimate 
for each pairwise transition between fingers.

Learning task. After the motor task, the participants were familiar-
ized with the structure of the learning task with 15 trials of a simplified 
version of the task. During this practice phase, the participants were 
instructed to use trial-by-trial feedback to learn the correct key to press 
(H, J or K) in response to three highly distinguishable emoji stimuli. The 
participants would see an emoji on every trial and then guess a response 
before receiving binary feedback as to whether their response was cor-
rect or not. Trial duration was unrestricted in this phase.

After familiarization with the basics of the learning task, the par-
ticipants returned their hands to the keys that they had used during 
the RT baseline task (left hand: A, S, D, F; right hand: H, J, K, L). Before 
the learning task began, the participants saw an instruction screen 
with eight stimuli that would be used during the task arranged in a 
random order on the screen. Once the task began, the participants 
saw one stimulus per trial and used trial-by-trial feedback to learn the 
correct button to press in response to each stimulus. Correct stimu-
lus–response associations were deterministic. The sequence of stimuli 
was random, such that every trial was independent. On every trial, the 
participants would see a single stimulus, make a response and then 
get feedback as to whether their response was correct or not (feed-
back duration, 750 ms; Fig. 1c). The next trial would proceed after 
the feedback from the previous trial disappeared. If the participant 
did not make a response within 2.5 s of viewing the stimulus, the trial 
would time out, and the participant would receive feedback that they 
needed to respond more quickly. The participants saw each of the 
eight stimuli at least 125 times (that is, 125 iterations of each stimulus) 
during the learning task.

Stimulus and visuomotor mapping design. Each stimulus varied 
along three features: colour (red, orange, blue or purple), shape 
(square, circle, triangle or diamond) and pattern (vertical stripes, 
diagonal stripes, dots or checkerboard). We randomly selected two 
possible values for each feature (for example, red and blue, square 
and circle, vertical stripes and dots) for each participant. Thus, all of 
the combinations of specific features yielded eight unique stimuli  
per participant.

To embed structure into the task, we assigned each feature to a 
level of an intuitive motor hierarchy, such that one feature indicated 
what hand to respond with (top-level), another feature dictated a pair 
of fingers within each hand or ‘couplet’ (mid-level) and the remain-
ing feature could be used to determine the correct response within a 
couplet (low-level; Fig. 1b). For example, if colour was associated with 
the top level, then all stimuli of one colour would be associated with 
responses in the right hand and all stimuli of the other colour would be 
associated with responses in the left hand. Mid- and low-level features 
were assigned from left to right in extrinsic space (Fig. 1b). There were 
six possible assignments of features to level (colour > shape > pattern; 
colour > pattern > shape; shape > colour > pattern; shape > pattern > 
colour; pattern > shape > colour; pattern > colour > shape), and we 
counterbalanced the assignment of features to level across partici-
pants. The participants were never instructed about the structure.

Modified structure control experiment
Task design. For the modified structure control experiment, we 
changed the task in Experiment 1 to measure whether other hierarchi-
cal structures were learnable to participants or whether the results of 
Experiment 1 were driven by the specific latent structure that we trained 
the participants on. The task design was identical to that of Experi-
ment 1 except for three key details. First, the participants executed the 
baseline task only once at the beginning of the experiment, rather than 
before and after the learning task, to reduce the length of the experi-
ment. Second, the task duration was shorter (approximately 30 min), 

and the participants saw only 55 presentations of each of the eight 
stimuli (a point at which participants had generally reached asymp-
totic performance in Experiment 1). Finally and most importantly, 
we modified the hierarchical structure of the visuomotor mapping: 
instead of feature values being assigned spatially in extrinsic space 
from left to right, we aligned the structure with the mirror symmetry 
of the motor system (Supplementary Fig. 2a). For example, while the 
stimuli associated with the left pinkie and right index finger shared 
mid- and low-level features in Experiment 1, the left and right index 
fingers shared the mid- and low-level features in this experiment. As in 
Experiment 1, we counterbalanced the assignment of features to task 
levels. The task was coded in jsPsych62 (version 6.1.0).

Experiment 2
Task design. Task design for Experiment 2 was identical to that of 
Experiment 1, except for the stimuli and structure of the visuomotor 
mapping. The participants were assigned one of two possible stimu-
lus sets in this experiment. In this case, stimuli varied only along one 
feature (rather than three), either colour or shape. Some participants 
saw eight squares of different colours during the task (Fig. 3e; orange, 
green, yellow, red, blue, pink, brown and purple), and others saw eight 
different shapes that were all black (square, circle, plus, diamond, 
pentagon, triangle, crescent moon and star). This change meant that 
there was no learnable visuomotor structure embedded into the task. 
All other details were the same as in Experiment 1 (RT baseline task 
before and after learning, 125 iterations of each stimulus during the 
learning task). The task was coded in jsPsych62 (version 6.1.0).

Experiment 3
Task design. The overall task design for Experiment 3 was the same as 
in the previous three experiments. In this experiment, the participants 
saw 55 iterations of each stimulus and performed the RT baseline task 
only once in the beginning of the session. We shortened the duration of 
the experiment to 55 iterations as participants in longer experiments 
had generally reached asymptotic performance at this point. We again 
used the three-feature stimuli described for Experiment 1; however, 
in this experiment, we created pseudorandomized mappings that 
minimized the amount of learnable intuitive motor structure in the 
mapping (Fig. 3i). Our aim was to assess whether the behaviour patterns 
from participants trained on the structured mappings arose from the 
use of the three-feature stimuli, rather than from the latent structure 
that we had embedded into the task. We opted for pseudorandomized 
mappings rather than fully randomizing the stimulus–response asso-
ciations because randomizing the limited number of features and 
stimuli often created somewhat structured mappings (for example 
shuffled mappings, see Supplementary Fig. 4). The task was coded in 
jsPsych62 (version 6.1.0).

Experiment 4
Task design. In Experiment 4, the participants started with the RT 
baseline task before moving into the learning task. The participants 
saw approximately 55 iterations of each stimulus in this task. We chose 
this number of iterations because the previous studies suggested that 
55 iterations was sufficient exposure for learning, and this duration 
allowed us sufficient time for the forced-response task (see below) 
before participants were too fatigued. Visuomotor mappings fol-
lowed the same structure as explained in Experiment 1 (Supplementary 
Fig. 5a). After the participants had learned the mapping during the 
learning task, they performed a forced-response task with the learned 
associations. Experiments 4 and 5 were coded in Octave63 (version 
6.4.0) using PsychToolbox64 (version 3.0.18).

Forced-response task. During the forced-response task, the partici-
pants heard four ascending beeps (400 ms apart) on each trial (Fig. 4a). 
The participants were instructed to time their response with the fourth 
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beep, regardless of whether they felt prepared to respond. We varied 
the time point at which the stimulus appeared on the screen during the 
beeps to manipulate the amount of preparation time (PT) participants 
had to make their responses on a trial-by-trial basis. PT is defined as 
the interval between when the stimulus appeared and the last beep 
of the trial. PTs were randomly selected from a uniform distribution 
from 100 ms to 1.2 s. Thus, on some trials, participants would have 
sufficient time to prepare, while on others they would have to prepare 
very rapidly (or guess). The participants were encouraged to respond at 
the appropriate time on each trial even if they felt that they were guess-
ing. After the participants made a response, they received feedback 
(750 ms) on whether their response was correct or not and whether 
they had responded in time with the fourth beep. The participants had 
a ±50-ms cushion from the exact instructed timing within which they 
would receive positive timing feedback.

The participants were familiarized with the forced-response task 
using the same emoji stimuli that were used to familiarize them with 
the learning task. This forced-response familiarization period occurred 
after the learning task practice and before the main learning task. After 
the learning task was completed, the participants executed approxi-
mately 760 forced-response trials (95 iterations per stimulus), and the 
task took approximately 25 min. The participants had the option to take 
self-timed breaks following each 100-trial block.

Experiment 5
Task design. Experiment 5 followed the same protocol as Experiment 
4 (including the shortened learning task duration to accommodate the 
forced-response task), with one change. The difference from Experi-
ment 4 was that participants were trained (Supplementary Fig. 5f) on 
unstructured mappings using the stimuli from Experiment 2 (eight 
squares of different colours or eight black shapes, counterbalanced). 
Again, the participants first executed the RT baseline task, followed 
by familiarization with the learning and forced-response paradigms. 
After familiarization, the participants learned the visuomotor mapping 
during the learning task. The session ended with the forced-response 
paradigm described above.

Experiment 6
Participants. We recruited a separate group of participants to par-
ticipate in the longitudinal version of the task. All participants offered 
informed consent prior to starting the study. In total, we recruited 27 
participants to take part in this study. Seven participants were unable to 
complete the eight sessions due to illness, withdrawal from the study or 
non-responsiveness, and we excluded them from analysis. Of the remain-
ing 20 participants (N = 17 female; mean age, 19.8 years; range, 18–22 
years), two participants missed one session. We opted to still include 
these participants in our analyses, given the difficulty of collecting the 
longitudinal data. Additionally, two participants had to reschedule 
their last sessions for two days after the intended eighth session due to 
illness. We also opted to include these participants in our analyses. The 
participants were compensated US$15 h−1 for their time (US$10 for in-lab 
sessions and US$15 for six online sessions) and received a US$10 bonus 
for completing the whole study at the end of the eight days.

Task design. The task closely resembled the design of Experiments 1 
and 4. The goal of this study was to have the participants practise the 
associations over eight days to assess whether the structured dynamics 
that we observed in Experiment 4 would be attenuated by extensive 
practice. In other words, do participants use the latent structure of the 
mapping early in learning and then compress to more direct stimulus–
response associations once they have additional practice?

To answer this question, we had the participants practise a hier-
archically structured mapping (as in Experiments 1 and 4) for eight 
consecutive days. On the first and last days of the experiment, the par-
ticipants came in-person to the lab to participate in a 30-min session. 

This session consisted of the same training procedure as the previous 
experiments, a motor baseline phase and the learning task (55 itera-
tions of each stimulus as in Experiments 3, 4 and 5). During Days 2–7, 
the participants were emailed a link each morning for 10 min of online 
practice with the mapping. The practice phase was identical to the 
learning task other than being shorter. If participants did not complete 
the task, they were reminded in the afternoon and again in the evening 
to complete their practice session.

We also ran a subset of the included participants (N = 9) on the 
forced-response task during the first and last sessions of their partici-
pation. For these participants, the first and last sessions were identical 
to Experiment 4.

Survey data collection
In addition to our six experiments, we collected survey data from 
37 participants (N female, 29; mean age, 18.8 years) to measure the 
participants’ intuitions about the learnability of structured versus 
unstructured mappings in our task. We note that we did not directly 
measure the intuitiveness of the structured mappings but rather used 
learnability as a proxy for intuitiveness. The participants were recruited 
from the Yale undergraduate community to participate in a different 
study that used the same three-feature stimuli as the tasks presented 
here. The task that they completed had the same general structure as 
Experiment 3—participants used trial-by-trial feedback to learn the 
correct response to eight three-feature stimuli with no underlying 
structure to the mappings. There were some differences in this proto-
col, such as a surprise memory test at the end of the session and a subset 
of stimuli that were presented less frequently than the other stimuli. 
The survey was presented at the end of the experimental session and 
took about 5 min to complete. Thus, the participants were familiar 
with the general task when they responded to the survey but had not 
been exposed to a structured mapping. In this way, we measured par-
ticipants’ intuitions about how latent structure affects the learnability 
of these stimulus–key mappings.

The survey presented the participants with two ways to indicate 
whether they thought structured mappings were easier to learn. First, 
the participants were asked to create an eight-to-eight stimulus–key 
mapping that they thought would be “easiest to learn for a new par-
ticipant”. On this question, the participants saw eight three-feature 
stimuli in a random order and selected one of the eight possible key 
responses for each stimulus. They were also asked to write a few sen-
tences explaining why they chose the assignment that they had created. 
Second, we asked the participants to rank eight mappings in order 
from easiest to hardest to learn. For this question, we displayed eight 
stimuli above pictures of the keys that participants used during the 
task (left hand: A, S, D, F; right hand: H, J, K, L). We included each of the 
six possible counterbalanced assignments of feature to hierarchy level 
(for example, shape → hand, colour → finger-couplet, pattern → finger) 
and two unstructured mappings in the options. The mappings were all 
arranged in external space (as in Experiments 1 and 4). We also asked the 
participants to explain why they thought that the mappings that they 
put at first and last would be the easiest and hardest to learn. We focus 
on this second question in this paper because it speaks more directly 
to the intuitiveness of the embedded structures.

Analysis
The data and analysis code are available at https://github.com/jetrach/
StructuredActionPrepVMDM.

Motor correction. We operationalized structure in the learned visuomo-
tor mappings by linking visual features to intuitive groupings of actions. 
Because our main interest was how the previous trial’s action affected 
the current trial, we had one major confound to contend with: intrinsic 
switch costs between the different fingers of each hand. We thus wanted 
to ensure that any RT effects that we observed as a result of learning the 
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visuomotor mapping were due to the structure of the mapping, rather 
than generic spatial or biomechanical influences on transitional RTs 
between fingers. To do this, we calculated the mean RT for each of the 64 
pairwise transitions between fingers during the RT baseline task. We then 
subtracted these RTs from the RTs of trials of the same finger-to-finger 
transitions during the learning task (Fig. 1e). We thus removed variance 
in the RTs that was present during the baseline task to isolate the impact 
of the learning task structure on RT. We performed our further analyses 
on these baseline-corrected RTs. We excluded the first five trials of the 
task and RTs that were especially slow, indicating that the participant 
was not attending to the task (3 s.d. above the mean RT).

Learning task. Our primary analyses in Experiments 1–3 were based on 
a straightforward logic: that after learning, RTs for correct responses 
would be influenced by the previous trial in a manner dictated by the 
learned visuomotor mapping, even though the sequence of stimuli 
across trials was randomized (that is, every trial was independent). That 
is, we reasoned that transitional RTs would spontaneously reflect the 
structure of the visuomotor mappings that people learned23. Analyses 
were conducted in R65 (version 4.2.1, 2022) or MATLAB66 (version 9.13.0, 
2022a, update 4).

We used repeated-measures ANOVAs and linear mixed-effects 
models to analyse our data. Additionally, we used two-tailed one- or 
two-sample t-tests or paired t-tests where appropriate and corrected 
for multiple comparisons using a Bonferroni correction. We used 
Welch t-tests when assumptions of normality were violated. We used 
Cohen’s d to quantify effect sizes for t-tests67 (effsize package in R, 
version 0.8.1) and η2 for ANOVAs. We report 95% CIs on the mean dif-
ference for t-tests and on partial eta squared (η2) for ANOVAs. For 
experiments with structured mappings (Experiments 1 and 4 and the 
modified structure experiment), we combined across all feature-level 
mappings as we had no a priori hypotheses for how these assignments 
might affect the RT results. We statistically justified this choice by 
conducting ANOVAs within experiments to compare overall RT and 
accuracy across feature-level assignments (Experiment 1: accuracy: 
F5,34 = 0.67, P = 0.647; RT: F5,34 = 1.3, P = 0.287; Experiment 4: accuracy: 
F5,30 = 0.47, P = 0.799; RT: F5,30 = 1.84, P = 0.135). Transitional RT analyses 
were performed on trials where participants responded correctly to the 
current and preceding trials (consecutively correct trials). We did this 
to ensure we were examining response dynamics after the participants 
had sufficiently learned the mapping, and to avoid confounds from 
post-error slowing that can occur in reinforcement learning settings68. 
We note, however, that the main results do not qualitatively change if 
we include all correct trials without conditioning on the previous trial 
being correct. We removed outlier RTs by excluding RTs under 200 ms 
where participants would not have had sufficient time to respond. 
In addition, we excluded the first three trials for each participant to 
account for task initiation costs.

We designed three linear mixed-effects models to operational-
ize our three main theoretical models of behaviour. The Hierarchical 
model used the number of graph edges or path distance between 
responses (0, 2, 4 or 6) on a given pair of successive trials to predict cor-
rected RTs. If the top-level feature (for example, shape) changed across 
trials, there were six graph edges between consecutive responses. On 
trials where the top-level feature repeated but the mid-level feature 
switched, there were four graph edges between consecutive responses. 
When the low-level feature switched, there were two edges between 
responses, and on trials where the exact stimulus repeated there were 
zero edges between responses. We used the structure we embedded 
into the mapping to calculate these distances in Experiment 1 and the 
modified structure control experiment. In Experiments 2 and 3, where 
there was no latent structure in the mapping, we used the extrinsic 
space hierarchical structure to calculate these path distances. This 
approach allowed us to rule out alternative accounts of hierarchical 
effects in Experiment 1.

For the Feature-Based model, we used the number of visual features 
that changed between the previous and current trials (0, 1, 2 or 3) to 
predict baseline-corrected RTs. Importantly, the stimulus and mapping 
design ensure that the Hierarchical and Feature-Based models do not 
predict the same RT behaviour. For instance, trials that are classified as 
six-edge paths in the Hierarchical model could have one, two or three 
features that change across that stimulus transition. Similarly, four-edge 
trials can have either one or two stimulus features changing across the 
transition. The two models thus make dissociable predictions about 
participant behaviour. For the Flat model, we modelled whether the 
stimulus repeated or switched (0 or 1) to predict baseline-corrected 
RTs. In addition to these three theoretically motivated models, we fit 
two models that considered the physical distance between responses 
in difference ways. We fit a Physical Distance model that counted the 
number of fingers between responses to predict corrected RT (0–7). 
This model operationalizes a spatially modulated attentional effect 
where participants are faster to make responses that are adjacent to their 
previous response. We also fit a Nearest-Neighbour model that predicts 
facilitated performance on transitions to neighbouring responses, but 
does not assume a linear effect that extends across both hands (as the 
Physical Distance model does; 0 for repeats, 1 for adjacent responses and 
2 for all other responses). We included random intercepts and slopes for 
each participant and compared model fits using the BIC.

Forced-response task (Experiments 4 and 5). Our analyses for the 
forced-response task examined the probability of different types of 
errors that participants made as a function of PT. To do this, we first 
calculated the actual PT that participants had on each trial by adding 
their RT to the planned PT that was hard-coded into the trial (that is, the 
interval between the visual stimulus appearance and the fourth tone 
in the countdown). For example, if the stimulus was displayed 700 ms 
before the response cue on a given trial, and the participant made their 
response 50 ms after the response cue, the actual PT on that trial would 
be 750 ms. Similarly, if the participant responded 50 ms before the cue, 
then the actual PT on that trial would be 650 ms. We did this to quantify 
PT more accurately on a trial-by-trial basis.

In Experiment 4, we classified errors on the basis of the highest 
feature level where there was a mismatch between the target stimulus 
and the stimulus associated with the response that the participant 
made (Fig. 4b). Thus, there was one correct response, one low-level 
error, two mid-level errors and four top-level errors possible on each 
trial. We normalized chance probabilities across error levels by dividing 
the raw probability of errors at each level by the number of responses 
associated with that level. In addition to this approach, we conducted 
primary analyses with errors coded for shared features between the 
target stimulus and the stimulus mapped to the response that the 
participant made at each level of the task (that is, without combining 
probabilities within error levels). Visualizations of this approach are 
depicted in Supplementary Fig. 7. We excluded trials where participants 
did not respond within 100 ms of the response cue. Because Experi-
ment 5 operates as a control experiment to rule out generic motor/
spatial explanations of our forced-response-time results, we applied 
the error coding scheme that we used in Experiment 4 to the responses 
in Experiment 5, as if those stimuli were structured in the same way. 
To visualize the PT results, we calculated the average probability of 
making each type of error in a 100-ms sliding window that was moved 
across the full range of PTs.

Response preparation models. We modified a previous model of 
response selection18 to formalize three theoretical models of action 
selection in our forced-response task. The basic model assumes that 
the time (T) it takes to prepare an action a is described by a normal 
distribution with a mean μ and standard deviation σ:

Ta = N(μa,σa) (1)
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By taking the cumulative density of this distribution, we get a 
sigmoidal function pa that describes the probability of having pre-
pared action a at any given PT. The probability that a given response 
is prepared is thus dependent on the amount of PT and the μ and σ 
parameters that describe the response preparation distribution.

We fit four extensions of this straightforward model to the partici-
pant data. The first model—the Flat model—assumes that the prepara-
tion of the correct action a simply involves an increase in the probability 
of selecting that action over time (that is, the cumulative density func-
tion of equation (1), pa). Critically, the model treats the selection of any 
of the seven other actions as equally probable at each time point. This 
model captures the idea that even if participants mentally represent 
the structure of the task, only a single action is potentiated at any time 
during action selection; this would be consistent with a strict separation 
of deciding on the correct stimulus–response association and prepar-
ing actual motor commands. Moreover, this model would be the best 
candidate for unstructured versions of the visuomotor mapping that 
have no embedded structure (Experiment 5).

In our second model variant—the Hierarchical model—we extended 
equation (1) to the preparation of ‘groupings’ of actions associated with 
each level, j, of the structured visuomotor mapping (Experiment 4):

T j = N(μj,σj) (2)

with each level having its own μ and σ free parameters, and where each 
μ describes how long, on average, it takes for a participant to ‘resolve’ 
level j of the learned mapping and prepare the relevant set of actions. 
Specifically, preparing the top level involves preparing all four actions 
on the correct hand, preparing the middle level involves preparing the 
correct couplet on each hand and preparing the lowest level involves 
preparing the correct left-versus-right finger position across all cou-
plets. According to this model, if sequential resolving from top to bot-
tom of each level of the visuomotor mapping potentiates the associated 
motor commands in real time, the fitted μ parameters should take the 
lowest values for the top/hand level (that is, the top is resolved first), 
middling values for the middle/couplet level and the highest values 
for the low/finger level. In other words, according to this structured 
action preparation model, the participant arrives at the correct action 
by sequentially ‘pruning’ the visuomotor mapping in real time. We fit an 
additional variant of this model that included only one σ free parameter 
that was used at all levels of the structure to see if variance in PTs was 
comparable across levels.

Lastly, we fit an additional variant of the model to formalize a 
Feature-Based model of action selection. Here we only allowed for one 
μ and one σ parameter but maintained the structured preparation of 
action groupings; this model thus assumes that the learned feature–
action associations shaped action selection but with no temporal 
prioritization of any particular features/levels.

Finally, we note that people often have to guess in the 
forced-response task given the strict temporal criteria. The 
goal-oriented action preparation processes described above are 
thus mixed at each time point with a guessing or ‘lapse’ process that 
assumes a uniform probability of any of the eight possible actions being 
selected, with a mixture parameter ρ that determines the weighting of 
guessing versus goal-oriented action preparation. This mixture model 
thus determines the final speed–accuracy probability function P of 
selecting action a:

Pa = (1 − ρ) × pa + ρ × 1/8 (3)

Response probabilities P generated by each model at each PT 
(rounded to the nearest ms) were fit directly to actual participant 
responses and PTs measured in the forced-response tasks (Experi-
ments 4 and 5). Parameter fits were optimized using the fmincon func-
tion in MATLAB. We ran 50 iterations of each fitting procedure for 

each participant to avoid local minima in the optimized model fits. To 
simulate the results, we computed the model’s response probability 
functions using the best fit parameters for each participant and then 
averaged the resulting curves over all participants.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The data that support the findings of this study are available via GitHub 
at https://github.com/jetrach/StructuredActionPrepVMDM.

Code availability
The code used is available via GitHub at https://github.com/jetrach/
StructuredActionPrepVMDM. The task code is available upon request. 
Please refer to the Methods for details on the software used in this 
project.
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